Learnable Gabor and Wavelet Filters Based Deep Learning Method for Imageforgery Detection Article Swipe
Pratik Joshi
,
José María Armingol
,
V. Masilamani
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5078746
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5078746
Related Topics
Concepts
Gabor wavelet
Artificial intelligence
Pattern recognition (psychology)
Gabor filter
Computer science
Wavelet
Computer vision
Gabor transform
Wavelet transform
Filter (signal processing)
Time–frequency analysis
Discrete wavelet transform
Feature extraction
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.5078746
- OA Status
- green
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405979181
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405979181Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5078746Digital Object Identifier
- Title
-
Learnable Gabor and Wavelet Filters Based Deep Learning Method for Imageforgery DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Pratik Joshi, José María Armingol, V. MasilamaniList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5078746Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5078746Direct OA link when available
- Concepts
-
Gabor wavelet, Artificial intelligence, Pattern recognition (psychology), Gabor filter, Computer science, Wavelet, Computer vision, Gabor transform, Wavelet transform, Filter (signal processing), Time–frequency analysis, Discrete wavelet transform, Feature extractionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405979181 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5078746 |
| ids.doi | https://doi.org/10.2139/ssrn.5078746 |
| ids.openalex | https://openalex.org/W4405979181 |
| fwci | 0.0 |
| type | preprint |
| title | Learnable Gabor and Wavelet Filters Based Deep Learning Method for Imageforgery Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12357 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Media Forensic Detection |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9962999820709229 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9945999979972839 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C136902061 |
| concepts[0].level | 5 |
| concepts[0].score | 0.7145607471466064 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q16981559 |
| concepts[0].display_name | Gabor wavelet |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6777023077011108 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5896692872047424 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C2779883129 |
| concepts[3].level | 3 |
| concepts[3].score | 0.586432158946991 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2447890 |
| concepts[3].display_name | Gabor filter |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5356131792068481 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C47432892 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5062583684921265 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[5].display_name | Wavelet |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4645530879497528 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C173149727 |
| concepts[7].level | 4 |
| concepts[7].score | 0.45362913608551025 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q996397 |
| concepts[7].display_name | Gabor transform |
| concepts[8].id | https://openalex.org/C196216189 |
| concepts[8].level | 3 |
| concepts[8].score | 0.2726172208786011 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[8].display_name | Wavelet transform |
| concepts[9].id | https://openalex.org/C106131492 |
| concepts[9].level | 2 |
| concepts[9].score | 0.23414987325668335 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[9].display_name | Filter (signal processing) |
| concepts[10].id | https://openalex.org/C142433447 |
| concepts[10].level | 3 |
| concepts[10].score | 0.20135384798049927 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7806653 |
| concepts[10].display_name | Time–frequency analysis |
| concepts[11].id | https://openalex.org/C46286280 |
| concepts[11].level | 4 |
| concepts[11].score | 0.1893627941608429 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2414958 |
| concepts[11].display_name | Discrete wavelet transform |
| concepts[12].id | https://openalex.org/C52622490 |
| concepts[12].level | 2 |
| concepts[12].score | 0.12684020400047302 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[12].display_name | Feature extraction |
| keywords[0].id | https://openalex.org/keywords/gabor-wavelet |
| keywords[0].score | 0.7145607471466064 |
| keywords[0].display_name | Gabor wavelet |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6777023077011108 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.5896692872047424 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/gabor-filter |
| keywords[3].score | 0.586432158946991 |
| keywords[3].display_name | Gabor filter |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5356131792068481 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/wavelet |
| keywords[5].score | 0.5062583684921265 |
| keywords[5].display_name | Wavelet |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.4645530879497528 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/gabor-transform |
| keywords[7].score | 0.45362913608551025 |
| keywords[7].display_name | Gabor transform |
| keywords[8].id | https://openalex.org/keywords/wavelet-transform |
| keywords[8].score | 0.2726172208786011 |
| keywords[8].display_name | Wavelet transform |
| keywords[9].id | https://openalex.org/keywords/filter |
| keywords[9].score | 0.23414987325668335 |
| keywords[9].display_name | Filter (signal processing) |
| keywords[10].id | https://openalex.org/keywords/time–frequency-analysis |
| keywords[10].score | 0.20135384798049927 |
| keywords[10].display_name | Time–frequency analysis |
| keywords[11].id | https://openalex.org/keywords/discrete-wavelet-transform |
| keywords[11].score | 0.1893627941608429 |
| keywords[11].display_name | Discrete wavelet transform |
| keywords[12].id | https://openalex.org/keywords/feature-extraction |
| keywords[12].score | 0.12684020400047302 |
| keywords[12].display_name | Feature extraction |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5078746 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5078746 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5001376284 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1837-7300 |
| authorships[0].author.display_name | Pratik Joshi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pratik Joshi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5026614974 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3353-9956 |
| authorships[1].author.display_name | José María Armingol |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9579091 |
| authorships[1].affiliations[0].raw_affiliation_string | IIT Mandi |
| authorships[1].institutions[0].id | https://openalex.org/I9579091 |
| authorships[1].institutions[0].ror | https://ror.org/05r9r2f34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9579091 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Mandi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Joel Suvisesha Muthu M |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | IIT Mandi |
| authorships[2].author.id | https://openalex.org/A5017252969 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | V. Masilamani |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Masilamani V |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5078746 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learnable Gabor and Wavelet Filters Based Deep Learning Method for Imageforgery Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12357 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Media Forensic Detection |
| related_works | https://openalex.org/W2070838085, https://openalex.org/W2495360253, https://openalex.org/W3156532881, https://openalex.org/W2382852560, https://openalex.org/W2347848979, https://openalex.org/W2355879620, https://openalex.org/W1830749786, https://openalex.org/W2066448268, https://openalex.org/W2121565431, https://openalex.org/W2162496653 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5078746 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5078746 |
| primary_location.id | doi:10.2139/ssrn.5078746 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5078746 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3046827028, https://openalex.org/W2995481985, https://openalex.org/W3089994210, https://openalex.org/W3080903596, https://openalex.org/W2942074357, https://openalex.org/W6755772070, https://openalex.org/W2737804889, https://openalex.org/W2891145043, https://openalex.org/W2912336782, https://openalex.org/W2531409750, https://openalex.org/W2949059773, https://openalex.org/W6768831031, https://openalex.org/W3131168966, https://openalex.org/W2913399670, https://openalex.org/W6746852581, https://openalex.org/W1782590233, https://openalex.org/W3017837134, https://openalex.org/W6764542186, https://openalex.org/W2911424785, https://openalex.org/W2064675550, https://openalex.org/W2945262873, https://openalex.org/W2909336075, https://openalex.org/W6675097358, https://openalex.org/W1969840923, https://openalex.org/W1996550590, https://openalex.org/W1992558806, https://openalex.org/W6687196179, https://openalex.org/W2098684142, https://openalex.org/W3011763265, https://openalex.org/W2163605009, https://openalex.org/W3013943710, https://openalex.org/W6743731764, https://openalex.org/W2979983945, https://openalex.org/W3092879151, https://openalex.org/W6803376173, https://openalex.org/W2907225497, https://openalex.org/W2183341477, https://openalex.org/W3011288915, https://openalex.org/W3025670292, https://openalex.org/W4298289240, https://openalex.org/W3034552520, https://openalex.org/W2963684180, https://openalex.org/W3034713808, https://openalex.org/W3035063907, https://openalex.org/W3083246145, https://openalex.org/W2097117768, https://openalex.org/W2301937176, https://openalex.org/W3109260931, https://openalex.org/W4309845474, https://openalex.org/W2962958939, https://openalex.org/W2898877033, https://openalex.org/W2982058372, https://openalex.org/W4288560577, https://openalex.org/W2953335716, https://openalex.org/W2302255633, https://openalex.org/W2808706139, https://openalex.org/W1686810756, https://openalex.org/W2102372511, https://openalex.org/W2188896583, https://openalex.org/W2963703618, https://openalex.org/W2981523288, https://openalex.org/W2774037436 |
| referenced_works_count | 62 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.00140604 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |