Learnable wavelet neural networks for cosmological inference Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2307.14362
Convolutional neural networks (CNNs) have been shown to both extract more information than the traditional two-point statistics from cosmological fields, and marginalise over astrophysical effects extremely well. However, CNNs require large amounts of training data, which is potentially problematic in the domain of expensive cosmological simulations, and it is difficult to interpret the network. In this work we apply the learnable scattering transform, a kind of convolutional neural network that uses trainable wavelets as filters, to the problem of cosmological inference and marginalisation over astrophysical effects. We present two models based on the scattering transform, one constructed for performance, and one constructed for interpretability, and perform a comparison with a CNN. We find that scattering architectures are able to outperform a CNN, significantly in the case of small training data samples. Additionally we present a lightweight scattering network that is highly interpretable.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2307.14362
- https://arxiv.org/pdf/2307.14362
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385373655
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385373655Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2307.14362Digital Object Identifier
- Title
-
Learnable wavelet neural networks for cosmological inferenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-24Full publication date if available
- Authors
-
Christian Pedersen, Michael Eickenberg, Shirley HoList of authors in order
- Landing page
-
https://arxiv.org/abs/2307.14362Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2307.14362Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2307.14362Direct OA link when available
- Concepts
-
Interpretability, Convolutional neural network, Inference, Artificial intelligence, Wavelet, Scattering, Artificial neural network, Pattern recognition (psychology), Computer science, Domain (mathematical analysis), Machine learning, Physics, Mathematics, Mathematical analysis, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385373655 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2307.14362 |
| ids.doi | https://doi.org/10.48550/arxiv.2307.14362 |
| ids.openalex | https://openalex.org/W4385373655 |
| fwci | |
| type | preprint |
| title | Learnable wavelet neural networks for cosmological inference |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13487 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9699000120162964 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2604 |
| topics[0].subfield.display_name | Applied Mathematics |
| topics[0].display_name | Statistical and numerical algorithms |
| topics[1].id | https://openalex.org/T13650 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9470999836921692 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Computational Physics and Python Applications |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9214000105857849 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8298611640930176 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7387934923171997 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6694359183311462 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6122016906738281 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C47432892 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5904282331466675 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[4].display_name | Wavelet |
| concepts[5].id | https://openalex.org/C191486275 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5147250294685364 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q210028 |
| concepts[5].display_name | Scattering |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5042732954025269 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4921085238456726 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4638543128967285 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C36503486 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45772963762283325 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[9].display_name | Domain (mathematical analysis) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4282810389995575 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3040996193885803 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.21242421865463257 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.08248981833457947 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C120665830 |
| concepts[14].level | 1 |
| concepts[14].score | 0.07041099667549133 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[14].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.8298611640930176 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.7387934923171997 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.6694359183311462 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6122016906738281 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/wavelet |
| keywords[4].score | 0.5904282331466675 |
| keywords[4].display_name | Wavelet |
| keywords[5].id | https://openalex.org/keywords/scattering |
| keywords[5].score | 0.5147250294685364 |
| keywords[5].display_name | Scattering |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5042732954025269 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.4921085238456726 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.4638543128967285 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/domain |
| keywords[9].score | 0.45772963762283325 |
| keywords[9].display_name | Domain (mathematical analysis) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.4282810389995575 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.3040996193885803 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.21242421865463257 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[13].score | 0.08248981833457947 |
| keywords[13].display_name | Mathematical analysis |
| keywords[14].id | https://openalex.org/keywords/optics |
| keywords[14].score | 0.07041099667549133 |
| keywords[14].display_name | Optics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2307.14362 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2307.14362 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2307.14362 |
| locations[1].id | doi:10.48550/arxiv.2307.14362 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2307.14362 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5089412165 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7238-489X |
| authorships[0].author.display_name | Christian Pedersen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pedersen, Christian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5065146930 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Michael Eickenberg |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Eickenberg, Michael |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049051097 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1068-160X |
| authorships[2].author.display_name | Shirley Ho |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ho, Shirley |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2307.14362 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learnable wavelet neural networks for cosmological inference |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13487 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9699000120162964 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2604 |
| primary_topic.subfield.display_name | Applied Mathematics |
| primary_topic.display_name | Statistical and numerical algorithms |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W4390569940, https://openalex.org/W2888392564, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W2806259446, https://openalex.org/W4361193272, https://openalex.org/W2963326959, https://openalex.org/W4312407344, https://openalex.org/W2894289927 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2307.14362 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2307.14362 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2307.14362 |
| primary_location.id | pmh:oai:arXiv.org:2307.14362 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2307.14362 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2307.14362 |
| publication_date | 2023-07-24 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 63, 106, 109, 120, 134 |
| abstract_inverted_index.In | 54 |
| abstract_inverted_index.We | 86, 111 |
| abstract_inverted_index.as | 73 |
| abstract_inverted_index.in | 39, 123 |
| abstract_inverted_index.is | 36, 48, 139 |
| abstract_inverted_index.it | 47 |
| abstract_inverted_index.of | 32, 42, 65, 78, 126 |
| abstract_inverted_index.on | 91 |
| abstract_inverted_index.to | 7, 50, 75, 118 |
| abstract_inverted_index.we | 57, 132 |
| abstract_inverted_index.and | 20, 46, 81, 99, 104 |
| abstract_inverted_index.are | 116 |
| abstract_inverted_index.for | 97, 102 |
| abstract_inverted_index.one | 95, 100 |
| abstract_inverted_index.the | 13, 40, 52, 59, 76, 92, 124 |
| abstract_inverted_index.two | 88 |
| abstract_inverted_index.CNN, | 121 |
| abstract_inverted_index.CNN. | 110 |
| abstract_inverted_index.CNNs | 28 |
| abstract_inverted_index.able | 117 |
| abstract_inverted_index.been | 5 |
| abstract_inverted_index.both | 8 |
| abstract_inverted_index.case | 125 |
| abstract_inverted_index.data | 129 |
| abstract_inverted_index.find | 112 |
| abstract_inverted_index.from | 17 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.kind | 64 |
| abstract_inverted_index.more | 10 |
| abstract_inverted_index.over | 22, 83 |
| abstract_inverted_index.than | 12 |
| abstract_inverted_index.that | 69, 113, 138 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.uses | 70 |
| abstract_inverted_index.with | 108 |
| abstract_inverted_index.work | 56 |
| abstract_inverted_index.apply | 58 |
| abstract_inverted_index.based | 90 |
| abstract_inverted_index.data, | 34 |
| abstract_inverted_index.large | 30 |
| abstract_inverted_index.shown | 6 |
| abstract_inverted_index.small | 127 |
| abstract_inverted_index.well. | 26 |
| abstract_inverted_index.which | 35 |
| abstract_inverted_index.(CNNs) | 3 |
| abstract_inverted_index.domain | 41 |
| abstract_inverted_index.highly | 140 |
| abstract_inverted_index.models | 89 |
| abstract_inverted_index.neural | 1, 67 |
| abstract_inverted_index.amounts | 31 |
| abstract_inverted_index.effects | 24 |
| abstract_inverted_index.extract | 9 |
| abstract_inverted_index.fields, | 19 |
| abstract_inverted_index.network | 68, 137 |
| abstract_inverted_index.perform | 105 |
| abstract_inverted_index.present | 87, 133 |
| abstract_inverted_index.problem | 77 |
| abstract_inverted_index.require | 29 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.effects. | 85 |
| abstract_inverted_index.filters, | 74 |
| abstract_inverted_index.network. | 53 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.samples. | 130 |
| abstract_inverted_index.training | 33, 128 |
| abstract_inverted_index.wavelets | 72 |
| abstract_inverted_index.difficult | 49 |
| abstract_inverted_index.expensive | 43 |
| abstract_inverted_index.extremely | 25 |
| abstract_inverted_index.inference | 80 |
| abstract_inverted_index.interpret | 51 |
| abstract_inverted_index.learnable | 60 |
| abstract_inverted_index.trainable | 71 |
| abstract_inverted_index.two-point | 15 |
| abstract_inverted_index.comparison | 107 |
| abstract_inverted_index.outperform | 119 |
| abstract_inverted_index.scattering | 61, 93, 114, 136 |
| abstract_inverted_index.statistics | 16 |
| abstract_inverted_index.transform, | 62, 94 |
| abstract_inverted_index.constructed | 96, 101 |
| abstract_inverted_index.information | 11 |
| abstract_inverted_index.lightweight | 135 |
| abstract_inverted_index.marginalise | 21 |
| abstract_inverted_index.potentially | 37 |
| abstract_inverted_index.problematic | 38 |
| abstract_inverted_index.traditional | 14 |
| abstract_inverted_index.Additionally | 131 |
| abstract_inverted_index.cosmological | 18, 44, 79 |
| abstract_inverted_index.performance, | 98 |
| abstract_inverted_index.simulations, | 45 |
| abstract_inverted_index.Convolutional | 0 |
| abstract_inverted_index.architectures | 115 |
| abstract_inverted_index.astrophysical | 23, 84 |
| abstract_inverted_index.convolutional | 66 |
| abstract_inverted_index.significantly | 122 |
| abstract_inverted_index.interpretable. | 141 |
| abstract_inverted_index.marginalisation | 82 |
| abstract_inverted_index.interpretability, | 103 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |