Learning a Class-specific and Shared Dictionary for Classifying Surface Defects of Steel Sheet Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.2355/isijinternational.isijint-2016-478
An approach to a class-specific and shared dictionary learning (CDSDL) for sparse representation is proposed to classify surface defects of steel sheet. The proposed CDSDL algorithm is modelled as a unified objective function, covering reconstructive error, sparse and discriminative promotion constraints. With the high-quality dictionary, the compact, reconstructive and discriminative feature representation of an image can be extracted. Then the classification can be efficiently performed by discriminative information obtained from the reconstructive error or the sparse vector. Based on a dataset of surface images captured from a practical steel production line, the CDSDL algorithm is carried out to verify its effectiveness. Experimental results indicate that the CDSDL algorithm is more effective in classifying surface defects of steel sheet than other algorithms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2355/isijinternational.isijint-2016-478
- https://www.jstage.jst.go.jp/article/isijinternational/57/1/57_ISIJINT-2016-478/_pdf
- OA Status
- gold
- Cited By
- 9
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2552846726
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2552846726Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2355/isijinternational.isijint-2016-478Digital Object Identifier
- Title
-
Learning a Class-specific and Shared Dictionary for Classifying Surface Defects of Steel SheetWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-11-25Full publication date if available
- Authors
-
Shiyang Zhou, Youping Chen, Dailin Zhang, Jingming Xie, Yunfei ZhouList of authors in order
- Landing page
-
https://doi.org/10.2355/isijinternational.isijint-2016-478Publisher landing page
- PDF URL
-
https://www.jstage.jst.go.jp/article/isijinternational/57/1/57_ISIJINT-2016-478/_pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.jstage.jst.go.jp/article/isijinternational/57/1/57_ISIJINT-2016-478/_pdfDirect OA link when available
- Concepts
-
Discriminative model, Sparse approximation, Surface (topology), Artificial intelligence, Pattern recognition (psychology), Representation (politics), Computer science, K-SVD, Class (philosophy), Feature (linguistics), Dictionary learning, Algorithm, Mathematics, Law, Linguistics, Geometry, Philosophy, Politics, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 1, 2021: 1, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2552846726 |
|---|---|
| doi | https://doi.org/10.2355/isijinternational.isijint-2016-478 |
| ids.doi | https://doi.org/10.2355/isijinternational.isijint-2016-478 |
| ids.mag | 2552846726 |
| ids.openalex | https://openalex.org/W2552846726 |
| fwci | 0.78267174 |
| type | article |
| title | Learning a Class-specific and Shared Dictionary for Classifying Surface Defects of Steel Sheet |
| biblio.issue | 1 |
| biblio.volume | 57 |
| biblio.last_page | 130 |
| biblio.first_page | 123 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T10638 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Optical measurement and interference techniques |
| topics[2].id | https://openalex.org/T13049 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9955000281333923 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Surface Roughness and Optical Measurements |
| is_xpac | False |
| apc_list.value | 93000 |
| apc_list.currency | JPY |
| apc_list.value_usd | 700 |
| apc_paid.value | 93000 |
| apc_paid.currency | JPY |
| apc_paid.value_usd | 700 |
| concepts[0].id | https://openalex.org/C97931131 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9039527177810669 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[0].display_name | Discriminative model |
| concepts[1].id | https://openalex.org/C124066611 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6140739917755127 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q28684319 |
| concepts[1].display_name | Sparse approximation |
| concepts[2].id | https://openalex.org/C2776799497 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6129207611083984 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q484298 |
| concepts[2].display_name | Surface (topology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6036703586578369 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5797808170318604 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C2776359362 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5742177963256836 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[5].display_name | Representation (politics) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5694790482521057 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C154771677 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4628426730632782 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17098361 |
| concepts[7].display_name | K-SVD |
| concepts[8].id | https://openalex.org/C2777212361 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4483911395072937 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[8].display_name | Class (philosophy) |
| concepts[9].id | https://openalex.org/C2776401178 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44058868288993835 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[9].display_name | Feature (linguistics) |
| concepts[10].id | https://openalex.org/C2988886741 |
| concepts[10].level | 3 |
| concepts[10].score | 0.43767961859703064 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25304494 |
| concepts[10].display_name | Dictionary learning |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3444204032421112 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2809000611305237 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C199539241 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[13].display_name | Law |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C94625758 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[17].display_name | Politics |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/discriminative-model |
| keywords[0].score | 0.9039527177810669 |
| keywords[0].display_name | Discriminative model |
| keywords[1].id | https://openalex.org/keywords/sparse-approximation |
| keywords[1].score | 0.6140739917755127 |
| keywords[1].display_name | Sparse approximation |
| keywords[2].id | https://openalex.org/keywords/surface |
| keywords[2].score | 0.6129207611083984 |
| keywords[2].display_name | Surface (topology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6036703586578369 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5797808170318604 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/representation |
| keywords[5].score | 0.5742177963256836 |
| keywords[5].display_name | Representation (politics) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5694790482521057 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/k-svd |
| keywords[7].score | 0.4628426730632782 |
| keywords[7].display_name | K-SVD |
| keywords[8].id | https://openalex.org/keywords/class |
| keywords[8].score | 0.4483911395072937 |
| keywords[8].display_name | Class (philosophy) |
| keywords[9].id | https://openalex.org/keywords/feature |
| keywords[9].score | 0.44058868288993835 |
| keywords[9].display_name | Feature (linguistics) |
| keywords[10].id | https://openalex.org/keywords/dictionary-learning |
| keywords[10].score | 0.43767961859703064 |
| keywords[10].display_name | Dictionary learning |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.3444204032421112 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.2809000611305237 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.2355/isijinternational.isijint-2016-478 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S63511553 |
| locations[0].source.issn | 0915-1559, 1347-5460 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0915-1559 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ISIJ International |
| locations[0].source.host_organization | https://openalex.org/P4320800556 |
| locations[0].source.host_organization_name | The Iron and Steel Institute of Japan |
| locations[0].source.host_organization_lineage | https://openalex.org/P4320800556 |
| locations[0].source.host_organization_lineage_names | The Iron and Steel Institute of Japan |
| locations[0].license | |
| locations[0].pdf_url | https://www.jstage.jst.go.jp/article/isijinternational/57/1/57_ISIJINT-2016-478/_pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ISIJ International |
| locations[0].landing_page_url | https://doi.org/10.2355/isijinternational.isijint-2016-478 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101771037 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6942-4368 |
| authorships[0].author.display_name | Shiyang Zhou |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mechanical Science and Engineering, Huazhong University of Science and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I47720641 |
| authorships[0].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shiyang Zhou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mechanical Science and Engineering, Huazhong University of Science and Technology |
| authorships[1].author.id | https://openalex.org/A5110018633 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Youping Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechanical Science and Engineering, Huazhong University of Science and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I47720641 |
| authorships[1].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Youping Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechanical Science and Engineering, Huazhong University of Science and Technology |
| authorships[2].author.id | https://openalex.org/A5051631432 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9848-4610 |
| authorships[2].author.display_name | Dailin Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mechanical Science and Engineering, Huazhong University of Science and Technology |
| authorships[2].institutions[0].id | https://openalex.org/I47720641 |
| authorships[2].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dailin Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mechanical Science and Engineering, Huazhong University of Science and Technology |
| authorships[3].author.id | https://openalex.org/A5103166003 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5974-8871 |
| authorships[3].author.display_name | Jingming Xie |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Mechanical Science and Engineering, Huazhong University of Science and Technology |
| authorships[3].institutions[0].id | https://openalex.org/I47720641 |
| authorships[3].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jingming Xie |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Mechanical Science and Engineering, Huazhong University of Science and Technology |
| authorships[4].author.id | https://openalex.org/A5101926039 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1989-9995 |
| authorships[4].author.display_name | Yunfei Zhou |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Mechanical Science and Engineering, Huazhong University of Science and Technology |
| authorships[4].institutions[0].id | https://openalex.org/I47720641 |
| authorships[4].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yunfei Zhou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Mechanical Science and Engineering, Huazhong University of Science and Technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.jstage.jst.go.jp/article/isijinternational/57/1/57_ISIJINT-2016-478/_pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning a Class-specific and Shared Dictionary for Classifying Surface Defects of Steel Sheet |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2157785665, https://openalex.org/W2035746673, https://openalex.org/W1982774199, https://openalex.org/W2510758617, https://openalex.org/W2546471346, https://openalex.org/W2621368543, https://openalex.org/W2292423757, https://openalex.org/W1914651075, https://openalex.org/W2522847406, https://openalex.org/W2077580092 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 1 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2355/isijinternational.isijint-2016-478 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S63511553 |
| best_oa_location.source.issn | 0915-1559, 1347-5460 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0915-1559 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ISIJ International |
| best_oa_location.source.host_organization | https://openalex.org/P4320800556 |
| best_oa_location.source.host_organization_name | The Iron and Steel Institute of Japan |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4320800556 |
| best_oa_location.source.host_organization_lineage_names | The Iron and Steel Institute of Japan |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.jstage.jst.go.jp/article/isijinternational/57/1/57_ISIJINT-2016-478/_pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ISIJ International |
| best_oa_location.landing_page_url | https://doi.org/10.2355/isijinternational.isijint-2016-478 |
| primary_location.id | doi:10.2355/isijinternational.isijint-2016-478 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S63511553 |
| primary_location.source.issn | 0915-1559, 1347-5460 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0915-1559 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ISIJ International |
| primary_location.source.host_organization | https://openalex.org/P4320800556 |
| primary_location.source.host_organization_name | The Iron and Steel Institute of Japan |
| primary_location.source.host_organization_lineage | https://openalex.org/P4320800556 |
| primary_location.source.host_organization_lineage_names | The Iron and Steel Institute of Japan |
| primary_location.license | |
| primary_location.pdf_url | https://www.jstage.jst.go.jp/article/isijinternational/57/1/57_ISIJINT-2016-478/_pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ISIJ International |
| primary_location.landing_page_url | https://doi.org/10.2355/isijinternational.isijint-2016-478 |
| publication_date | 2016-11-25 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2004313226, https://openalex.org/W2021609979, https://openalex.org/W2026445526, https://openalex.org/W2091250708, https://openalex.org/W2097946161, https://openalex.org/W1992181517, https://openalex.org/W2178525996, https://openalex.org/W2155903085, https://openalex.org/W2034810702, https://openalex.org/W2196029350, https://openalex.org/W2028775883, https://openalex.org/W2027528832, https://openalex.org/W2044342579, https://openalex.org/W1975551334, https://openalex.org/W2078087367, https://openalex.org/W2092072518, https://openalex.org/W2181150946, https://openalex.org/W2087378082, https://openalex.org/W2069959554, https://openalex.org/W2129812935, https://openalex.org/W2163398148, https://openalex.org/W2023630749, https://openalex.org/W2160547390, https://openalex.org/W2025776762, https://openalex.org/W1963932623, https://openalex.org/W2163112044, https://openalex.org/W1982405594, https://openalex.org/W2101285851, https://openalex.org/W2164576411, https://openalex.org/W1999174140, https://openalex.org/W1976709621, https://openalex.org/W2122825543, https://openalex.org/W2963689635, https://openalex.org/W2130187411, https://openalex.org/W2128659236, https://openalex.org/W2100556411, https://openalex.org/W2028349405, https://openalex.org/W1971361074 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 3, 29, 79, 86 |
| abstract_inverted_index.An | 0 |
| abstract_inverted_index.an | 53 |
| abstract_inverted_index.as | 28 |
| abstract_inverted_index.be | 56, 62 |
| abstract_inverted_index.by | 65 |
| abstract_inverted_index.in | 111 |
| abstract_inverted_index.is | 13, 26, 94, 108 |
| abstract_inverted_index.of | 19, 52, 81, 115 |
| abstract_inverted_index.on | 78 |
| abstract_inverted_index.or | 73 |
| abstract_inverted_index.to | 2, 15, 97 |
| abstract_inverted_index.The | 22 |
| abstract_inverted_index.and | 5, 37, 48 |
| abstract_inverted_index.can | 55, 61 |
| abstract_inverted_index.for | 10 |
| abstract_inverted_index.its | 99 |
| abstract_inverted_index.out | 96 |
| abstract_inverted_index.the | 42, 45, 59, 70, 74, 91, 105 |
| abstract_inverted_index.Then | 58 |
| abstract_inverted_index.With | 41 |
| abstract_inverted_index.from | 69, 85 |
| abstract_inverted_index.more | 109 |
| abstract_inverted_index.than | 118 |
| abstract_inverted_index.that | 104 |
| abstract_inverted_index.Based | 77 |
| abstract_inverted_index.CDSDL | 24, 92, 106 |
| abstract_inverted_index.error | 72 |
| abstract_inverted_index.image | 54 |
| abstract_inverted_index.line, | 90 |
| abstract_inverted_index.other | 119 |
| abstract_inverted_index.sheet | 117 |
| abstract_inverted_index.steel | 20, 88, 116 |
| abstract_inverted_index.error, | 35 |
| abstract_inverted_index.images | 83 |
| abstract_inverted_index.shared | 6 |
| abstract_inverted_index.sheet. | 21 |
| abstract_inverted_index.sparse | 11, 36, 75 |
| abstract_inverted_index.verify | 98 |
| abstract_inverted_index.(CDSDL) | 9 |
| abstract_inverted_index.carried | 95 |
| abstract_inverted_index.dataset | 80 |
| abstract_inverted_index.defects | 18, 114 |
| abstract_inverted_index.feature | 50 |
| abstract_inverted_index.results | 102 |
| abstract_inverted_index.surface | 17, 82, 113 |
| abstract_inverted_index.unified | 30 |
| abstract_inverted_index.vector. | 76 |
| abstract_inverted_index.approach | 1 |
| abstract_inverted_index.captured | 84 |
| abstract_inverted_index.classify | 16 |
| abstract_inverted_index.compact, | 46 |
| abstract_inverted_index.covering | 33 |
| abstract_inverted_index.indicate | 103 |
| abstract_inverted_index.learning | 8 |
| abstract_inverted_index.modelled | 27 |
| abstract_inverted_index.obtained | 68 |
| abstract_inverted_index.proposed | 14, 23 |
| abstract_inverted_index.algorithm | 25, 93, 107 |
| abstract_inverted_index.effective | 110 |
| abstract_inverted_index.function, | 32 |
| abstract_inverted_index.objective | 31 |
| abstract_inverted_index.performed | 64 |
| abstract_inverted_index.practical | 87 |
| abstract_inverted_index.promotion | 39 |
| abstract_inverted_index.dictionary | 7 |
| abstract_inverted_index.extracted. | 57 |
| abstract_inverted_index.production | 89 |
| abstract_inverted_index.algorithms. | 120 |
| abstract_inverted_index.classifying | 112 |
| abstract_inverted_index.dictionary, | 44 |
| abstract_inverted_index.efficiently | 63 |
| abstract_inverted_index.information | 67 |
| abstract_inverted_index.Experimental | 101 |
| abstract_inverted_index.constraints. | 40 |
| abstract_inverted_index.high-quality | 43 |
| abstract_inverted_index.class-specific | 4 |
| abstract_inverted_index.classification | 60 |
| abstract_inverted_index.discriminative | 38, 49, 66 |
| abstract_inverted_index.effectiveness. | 100 |
| abstract_inverted_index.reconstructive | 34, 47, 71 |
| abstract_inverted_index.representation | 12, 51 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.80195731 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |