Learning a CoNCISE language for small-molecule binding Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.01.08.632039
Rapid advances in deep learning have improved in silico methods for drug-target interaction (DTI) prediction. However, current methods do not scale to the massive catalogs that list millions or billions of commercially-available small molecules. Here, we introduce CoNCISE, a method that accelerates drug-target interaction (DTI) prediction by 2-3 orders of magnitude while maintaining high accuracy. CoNCISE uses a novel vector-quantized codebook approach and a residual-learning based training of hierarchical codes. Strikingly, we find that much of binding-specificity information in the small molecule space can be compressed into just 15 bits of information per compound, characterizing all small molecules into 32,768 hierarchically-organized binding categories. Our DTI architecture, which combines these compact ligand representations with fixed-length protein embeddings in a cross-attention framework, achieves state-of-the-art prediction accuracy at unprecedented speed. We demonstrate CoNCISE’s practical utility by indexing 6.4 billion ligands in the Enamine dataset, enabling researchers to query vast chemical libraries against a protein target in seconds. A “CoNCISE + docking” pipeline screened Enamine to propose strong binders (predicted K D ≈ 10-20 µ M) of three difficult-to-drug targets, each within two hours. CoNCISE’s advance could democratize access to largescale computational drug discovery, potentially enabling rapid identification of promising molecules for therapeutic targets and cellular perturbations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.01.08.632039
- OA Status
- green
- Cited By
- 1
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406324461
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406324461Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.01.08.632039Digital Object Identifier
- Title
-
Learning a CoNCISE language for small-molecule bindingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-13Full publication date if available
- Authors
-
Mert Erden, Kapil Devkota, Lia Varghese, Lenore Cowen, Rohit SinghList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.01.08.632039Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1101/2025.01.08.632039Direct OA link when available
- Concepts
-
Chemistry, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406324461 |
|---|---|
| doi | https://doi.org/10.1101/2025.01.08.632039 |
| ids.doi | https://doi.org/10.1101/2025.01.08.632039 |
| ids.openalex | https://openalex.org/W4406324461 |
| fwci | 5.01839543 |
| type | preprint |
| title | Learning a CoNCISE language for small-molecule binding |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9959999918937683 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T10252 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9926000237464905 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2736 |
| topics[1].subfield.display_name | Pharmacology |
| topics[1].display_name | Microbial Natural Products and Biosynthesis |
| topics[2].id | https://openalex.org/T10887 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9767000079154968 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Bioinformatics and Genomic Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185592680 |
| concepts[0].level | 0 |
| concepts[0].score | 0.4003557562828064 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[0].display_name | Chemistry |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.379089891910553 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/chemistry |
| keywords[0].score | 0.4003557562828064 |
| keywords[0].display_name | Chemistry |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.379089891910553 |
| keywords[1].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1101/2025.01.08.632039 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.01.08.632039 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5028761606 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4718-9181 |
| authorships[0].author.display_name | Mert Erden |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I121934306 |
| authorships[0].affiliations[0].raw_affiliation_string | Tufts University |
| authorships[0].institutions[0].id | https://openalex.org/I121934306 |
| authorships[0].institutions[0].ror | https://ror.org/05wvpxv85 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I121934306 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Tufts University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mert Erden |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Tufts University |
| authorships[1].author.id | https://openalex.org/A5036303987 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6093-6260 |
| authorships[1].author.display_name | Kapil Devkota |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[1].affiliations[0].raw_affiliation_string | Duke University |
| authorships[1].institutions[0].id | https://openalex.org/I170897317 |
| authorships[1].institutions[0].ror | https://ror.org/00py81415 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Duke University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kapil Devkota |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Duke University |
| authorships[2].author.id | https://openalex.org/A5115863738 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Lia Varghese |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I79817857 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Guelph |
| authorships[2].institutions[0].id | https://openalex.org/I79817857 |
| authorships[2].institutions[0].ror | https://ror.org/01r7awg59 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I79817857 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | University of Guelph |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lia Varghese |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Guelph |
| authorships[3].author.id | https://openalex.org/A5026411021 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6698-6413 |
| authorships[3].author.display_name | Lenore Cowen |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I121934306 |
| authorships[3].affiliations[0].raw_affiliation_string | Tufts University |
| authorships[3].institutions[0].id | https://openalex.org/I121934306 |
| authorships[3].institutions[0].ror | https://ror.org/05wvpxv85 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I121934306 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Tufts University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lenore Cowen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Tufts University |
| authorships[4].author.id | https://openalex.org/A5081688191 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4084-7340 |
| authorships[4].author.display_name | Rohit Singh |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[4].affiliations[0].raw_affiliation_string | Duke University |
| authorships[4].institutions[0].id | https://openalex.org/I170897317 |
| authorships[4].institutions[0].ror | https://ror.org/00py81415 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Duke University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Rohit Singh |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Duke University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1101/2025.01.08.632039 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning a CoNCISE language for small-molecule binding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9959999918937683 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W2948807893, https://openalex.org/W2899084033, https://openalex.org/W2778153218, https://openalex.org/W2748952813, https://openalex.org/W1531601525, https://openalex.org/W4391375266, https://openalex.org/W2078814861, https://openalex.org/W2527526854, https://openalex.org/W1976181487 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.01.08.632039 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.01.08.632039 |
| primary_location.id | doi:10.1101/2025.01.08.632039 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.01.08.632039 |
| publication_date | 2025-01-13 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2168990503, https://openalex.org/W2909727437, https://openalex.org/W3166142427, https://openalex.org/W4396519787, https://openalex.org/W4302307901, https://openalex.org/W2086286404, https://openalex.org/W4401670099, https://openalex.org/W4400795417, https://openalex.org/W3177500196, https://openalex.org/W2336040088, https://openalex.org/W3198646379, https://openalex.org/W3215918055, https://openalex.org/W4392190002, https://openalex.org/W2207046140, https://openalex.org/W4400231442, https://openalex.org/W1607164856, https://openalex.org/W3094640617, https://openalex.org/W2786722833, https://openalex.org/W3177828909, https://openalex.org/W4327550249, https://openalex.org/W4242372416, https://openalex.org/W4402511830, https://openalex.org/W4388409550, https://openalex.org/W4387158294, https://openalex.org/W2770538422, https://openalex.org/W2044834685, https://openalex.org/W3146944767, https://openalex.org/W1988037271, https://openalex.org/W4379932151, https://openalex.org/W4388007030, https://openalex.org/W2950954328, https://openalex.org/W4387303685, https://openalex.org/W4387995257, https://openalex.org/W2001141328, https://openalex.org/W2752796333, https://openalex.org/W4375858802, https://openalex.org/W4223920159, https://openalex.org/W4321373015, https://openalex.org/W4286669150 |
| referenced_works_count | 39 |
| abstract_inverted_index.+ | 157 |
| abstract_inverted_index.A | 155 |
| abstract_inverted_index.D | 168 |
| abstract_inverted_index.K | 167 |
| abstract_inverted_index.a | 39, 58, 64, 118, 150 |
| abstract_inverted_index.15 | 89 |
| abstract_inverted_index.M) | 172 |
| abstract_inverted_index.We | 128 |
| abstract_inverted_index.at | 125 |
| abstract_inverted_index.be | 85 |
| abstract_inverted_index.by | 47, 133 |
| abstract_inverted_index.do | 19 |
| abstract_inverted_index.in | 3, 8, 79, 117, 138, 153 |
| abstract_inverted_index.of | 31, 50, 68, 76, 91, 173, 195 |
| abstract_inverted_index.or | 29 |
| abstract_inverted_index.to | 22, 144, 162, 186 |
| abstract_inverted_index.we | 36, 72 |
| abstract_inverted_index.µ | 171 |
| abstract_inverted_index.2-3 | 48 |
| abstract_inverted_index.6.4 | 135 |
| abstract_inverted_index.DTI | 105 |
| abstract_inverted_index.Our | 104 |
| abstract_inverted_index.all | 96 |
| abstract_inverted_index.and | 63, 201 |
| abstract_inverted_index.can | 84 |
| abstract_inverted_index.for | 11, 198 |
| abstract_inverted_index.not | 20 |
| abstract_inverted_index.per | 93 |
| abstract_inverted_index.the | 23, 80, 139 |
| abstract_inverted_index.two | 179 |
| abstract_inverted_index.≈ | 169 |
| abstract_inverted_index.bits | 90 |
| abstract_inverted_index.deep | 4 |
| abstract_inverted_index.drug | 189 |
| abstract_inverted_index.each | 177 |
| abstract_inverted_index.find | 73 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.high | 54 |
| abstract_inverted_index.into | 87, 99 |
| abstract_inverted_index.just | 88 |
| abstract_inverted_index.list | 27 |
| abstract_inverted_index.much | 75 |
| abstract_inverted_index.that | 26, 41, 74 |
| abstract_inverted_index.uses | 57 |
| abstract_inverted_index.vast | 146 |
| abstract_inverted_index.with | 113 |
| abstract_inverted_index.(DTI) | 14, 45 |
| abstract_inverted_index.10-20 | 170 |
| abstract_inverted_index.Here, | 35 |
| abstract_inverted_index.Rapid | 1 |
| abstract_inverted_index.based | 66 |
| abstract_inverted_index.could | 183 |
| abstract_inverted_index.novel | 59 |
| abstract_inverted_index.query | 145 |
| abstract_inverted_index.rapid | 193 |
| abstract_inverted_index.scale | 21 |
| abstract_inverted_index.small | 33, 81, 97 |
| abstract_inverted_index.space | 83 |
| abstract_inverted_index.these | 109 |
| abstract_inverted_index.three | 174 |
| abstract_inverted_index.which | 107 |
| abstract_inverted_index.while | 52 |
| abstract_inverted_index.32,768 | 100 |
| abstract_inverted_index.access | 185 |
| abstract_inverted_index.codes. | 70 |
| abstract_inverted_index.hours. | 180 |
| abstract_inverted_index.ligand | 111 |
| abstract_inverted_index.method | 40 |
| abstract_inverted_index.orders | 49 |
| abstract_inverted_index.silico | 9 |
| abstract_inverted_index.speed. | 127 |
| abstract_inverted_index.strong | 164 |
| abstract_inverted_index.target | 152 |
| abstract_inverted_index.within | 178 |
| abstract_inverted_index.CoNCISE | 56 |
| abstract_inverted_index.Enamine | 140, 161 |
| abstract_inverted_index.advance | 182 |
| abstract_inverted_index.against | 149 |
| abstract_inverted_index.billion | 136 |
| abstract_inverted_index.binders | 165 |
| abstract_inverted_index.binding | 102 |
| abstract_inverted_index.compact | 110 |
| abstract_inverted_index.current | 17 |
| abstract_inverted_index.ligands | 137 |
| abstract_inverted_index.massive | 24 |
| abstract_inverted_index.methods | 10, 18 |
| abstract_inverted_index.propose | 163 |
| abstract_inverted_index.protein | 115, 151 |
| abstract_inverted_index.targets | 200 |
| abstract_inverted_index.utility | 132 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.CoNCISE, | 38 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.accuracy | 124 |
| abstract_inverted_index.achieves | 121 |
| abstract_inverted_index.advances | 2 |
| abstract_inverted_index.approach | 62 |
| abstract_inverted_index.billions | 30 |
| abstract_inverted_index.catalogs | 25 |
| abstract_inverted_index.cellular | 202 |
| abstract_inverted_index.chemical | 147 |
| abstract_inverted_index.codebook | 61 |
| abstract_inverted_index.combines | 108 |
| abstract_inverted_index.dataset, | 141 |
| abstract_inverted_index.enabling | 142, 192 |
| abstract_inverted_index.improved | 7 |
| abstract_inverted_index.indexing | 134 |
| abstract_inverted_index.learning | 5 |
| abstract_inverted_index.millions | 28 |
| abstract_inverted_index.molecule | 82 |
| abstract_inverted_index.pipeline | 159 |
| abstract_inverted_index.screened | 160 |
| abstract_inverted_index.seconds. | 154 |
| abstract_inverted_index.targets, | 176 |
| abstract_inverted_index.training | 67 |
| abstract_inverted_index.accuracy. | 55 |
| abstract_inverted_index.compound, | 94 |
| abstract_inverted_index.introduce | 37 |
| abstract_inverted_index.libraries | 148 |
| abstract_inverted_index.magnitude | 51 |
| abstract_inverted_index.molecules | 98, 197 |
| abstract_inverted_index.practical | 131 |
| abstract_inverted_index.promising | 196 |
| abstract_inverted_index.(predicted | 166 |
| abstract_inverted_index.compressed | 86 |
| abstract_inverted_index.discovery, | 190 |
| abstract_inverted_index.docking” | 158 |
| abstract_inverted_index.embeddings | 116 |
| abstract_inverted_index.framework, | 120 |
| abstract_inverted_index.largescale | 187 |
| abstract_inverted_index.molecules. | 34 |
| abstract_inverted_index.prediction | 46, 123 |
| abstract_inverted_index.“CoNCISE | 156 |
| abstract_inverted_index.CoNCISE’s | 130, 181 |
| abstract_inverted_index.Strikingly, | 71 |
| abstract_inverted_index.accelerates | 42 |
| abstract_inverted_index.categories. | 103 |
| abstract_inverted_index.democratize | 184 |
| abstract_inverted_index.demonstrate | 129 |
| abstract_inverted_index.drug-target | 12, 43 |
| abstract_inverted_index.information | 78, 92 |
| abstract_inverted_index.interaction | 13, 44 |
| abstract_inverted_index.maintaining | 53 |
| abstract_inverted_index.potentially | 191 |
| abstract_inverted_index.prediction. | 15 |
| abstract_inverted_index.researchers | 143 |
| abstract_inverted_index.therapeutic | 199 |
| abstract_inverted_index.fixed-length | 114 |
| abstract_inverted_index.hierarchical | 69 |
| abstract_inverted_index.architecture, | 106 |
| abstract_inverted_index.computational | 188 |
| abstract_inverted_index.unprecedented | 126 |
| abstract_inverted_index.characterizing | 95 |
| abstract_inverted_index.identification | 194 |
| abstract_inverted_index.perturbations. | 203 |
| abstract_inverted_index.cross-attention | 119 |
| abstract_inverted_index.representations | 112 |
| abstract_inverted_index.state-of-the-art | 122 |
| abstract_inverted_index.vector-quantized | 60 |
| abstract_inverted_index.difficult-to-drug | 175 |
| abstract_inverted_index.residual-learning | 65 |
| abstract_inverted_index.binding-specificity | 77 |
| abstract_inverted_index.commercially-available | 32 |
| abstract_inverted_index.hierarchically-organized | 101 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5081688191 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I170897317 |
| citation_normalized_percentile.value | 0.84537559 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |