Learning a Discriminative Feature Network for Semantic Segmentation Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1804.09337
Most existing methods of semantic segmentation still suffer from two aspects of challenges: intra-class inconsistency and inter-class indistinction. To tackle these two problems, we propose a Discriminative Feature Network (DFN), which contains two sub-networks: Smooth Network and Border Network. Specifically, to handle the intra-class inconsistency problem, we specially design a Smooth Network with Channel Attention Block and global average pooling to select the more discriminative features. Furthermore, we propose a Border Network to make the bilateral features of boundary distinguishable with deep semantic boundary supervision. Based on our proposed DFN, we achieve state-of-the-art performance 86.2% mean IOU on PASCAL VOC 2012 and 80.3% mean IOU on Cityscapes dataset.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1804.09337
- https://arxiv.org/pdf/1804.09337
- OA Status
- green
- Cited By
- 88
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2952577426
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2952577426Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1804.09337Digital Object Identifier
- Title
-
Learning a Discriminative Feature Network for Semantic SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-04-25Full publication date if available
- Authors
-
Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, Nong SangList of authors in order
- Landing page
-
https://arxiv.org/abs/1804.09337Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1804.09337Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1804.09337Direct OA link when available
- Concepts
-
Discriminative model, Pooling, Pascal (unit), Computer science, Artificial intelligence, Segmentation, Feature (linguistics), Pattern recognition (psychology), Class (philosophy), Backbone network, Semantic feature, Machine learning, Computer network, Philosophy, Programming language, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
88Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 2, 2022: 8, 2021: 16, 2020: 21Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2952577426 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1804.09337 |
| ids.doi | https://doi.org/10.48550/arxiv.1804.09337 |
| ids.mag | 2952577426 |
| ids.openalex | https://openalex.org/W2952577426 |
| fwci | |
| type | preprint |
| title | Learning a Discriminative Feature Network for Semantic Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9987000226974487 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97931131 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9080684185028076 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[0].display_name | Discriminative model |
| concepts[1].id | https://openalex.org/C70437156 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8393784761428833 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[1].display_name | Pooling |
| concepts[2].id | https://openalex.org/C75608658 |
| concepts[2].level | 2 |
| concepts[2].score | 0.8285859823226929 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q44395 |
| concepts[2].display_name | Pascal (unit) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.7374418377876282 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6859391927719116 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C89600930 |
| concepts[5].level | 2 |
| concepts[5].score | 0.675894558429718 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[5].display_name | Segmentation |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5829228162765503 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.56365567445755 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C2777212361 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5178630352020264 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[8].display_name | Class (philosophy) |
| concepts[9].id | https://openalex.org/C88796919 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4972262680530548 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1142907 |
| concepts[9].display_name | Backbone network |
| concepts[10].id | https://openalex.org/C2781122975 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41279321908950806 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q16928266 |
| concepts[10].display_name | Semantic feature |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34626299142837524 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C31258907 |
| concepts[12].level | 1 |
| concepts[12].score | 0.06971397995948792 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[12].display_name | Computer network |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/discriminative-model |
| keywords[0].score | 0.9080684185028076 |
| keywords[0].display_name | Discriminative model |
| keywords[1].id | https://openalex.org/keywords/pooling |
| keywords[1].score | 0.8393784761428833 |
| keywords[1].display_name | Pooling |
| keywords[2].id | https://openalex.org/keywords/pascal |
| keywords[2].score | 0.8285859823226929 |
| keywords[2].display_name | Pascal (unit) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.7374418377876282 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6859391927719116 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/segmentation |
| keywords[5].score | 0.675894558429718 |
| keywords[5].display_name | Segmentation |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5829228162765503 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.56365567445755 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/class |
| keywords[8].score | 0.5178630352020264 |
| keywords[8].display_name | Class (philosophy) |
| keywords[9].id | https://openalex.org/keywords/backbone-network |
| keywords[9].score | 0.4972262680530548 |
| keywords[9].display_name | Backbone network |
| keywords[10].id | https://openalex.org/keywords/semantic-feature |
| keywords[10].score | 0.41279321908950806 |
| keywords[10].display_name | Semantic feature |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.34626299142837524 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/computer-network |
| keywords[12].score | 0.06971397995948792 |
| keywords[12].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1804.09337 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1804.09337 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1804.09337 |
| locations[1].id | doi:10.48550/arxiv.1804.09337 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1804.09337 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5013651586 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4488-4157 |
| authorships[0].author.display_name | Changqian Yu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[0].affiliations[0].raw_affiliation_string | [Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, Huazhong University of Science and Technology] |
| authorships[0].institutions[0].id | https://openalex.org/I47720641 |
| authorships[0].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Changqian Yu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | [Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, Huazhong University of Science and Technology] |
| authorships[1].author.id | https://openalex.org/A5100456762 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9700-6262 |
| authorships[1].author.display_name | Jingbo Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Machine Perception Peking University |
| authorships[1].institutions[0].id | https://openalex.org/I20231570 |
| authorships[1].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Peking University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jingbo Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Machine Perception Peking University |
| authorships[2].author.id | https://openalex.org/A5020100372 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4069-4775 |
| authorships[2].author.display_name | Chao Peng |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4401726805 |
| authorships[2].affiliations[0].raw_affiliation_string | [Megvii Inc. (Face++)] |
| authorships[2].institutions[0].id | https://openalex.org/I4401726805 |
| authorships[2].institutions[0].ror | https://ror.org/040b32p69 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4401726805 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Megvii (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chao Peng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | [Megvii Inc. (Face++)] |
| authorships[3].author.id | https://openalex.org/A5035295689 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2736-3920 |
| authorships[3].author.display_name | Changxin Gao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[3].affiliations[0].raw_affiliation_string | [Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, Huazhong University of Science and Technology] |
| authorships[3].institutions[0].id | https://openalex.org/I47720641 |
| authorships[3].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Changxin Gao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | [Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, Huazhong University of Science and Technology] |
| authorships[4].author.id | https://openalex.org/A5003400275 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5570-2710 |
| authorships[4].author.display_name | Gang Yu |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4401726805 |
| authorships[4].affiliations[0].raw_affiliation_string | [Megvii Inc. (Face++)] |
| authorships[4].institutions[0].id | https://openalex.org/I4401726805 |
| authorships[4].institutions[0].ror | https://ror.org/040b32p69 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4401726805 |
| authorships[4].institutions[0].country_code | |
| authorships[4].institutions[0].display_name | Megvii (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gang Yu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | [Megvii Inc. (Face++)] |
| authorships[5].author.id | https://openalex.org/A5013734579 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9167-1496 |
| authorships[5].author.display_name | Nong Sang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[5].affiliations[0].raw_affiliation_string | [Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, Huazhong University of Science and Technology] |
| authorships[5].institutions[0].id | https://openalex.org/I47720641 |
| authorships[5].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Nong Sang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | [Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, Huazhong University of Science and Technology] |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1804.09337 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning a Discriminative Feature Network for Semantic Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W2953234277, https://openalex.org/W2626256601, https://openalex.org/W2900413183, https://openalex.org/W4390975304, https://openalex.org/W147410782, https://openalex.org/W3022252430, https://openalex.org/W4287804464, https://openalex.org/W3103989898, https://openalex.org/W2006017062, https://openalex.org/W3155393898 |
| cited_by_count | 88 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 16 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 21 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 30 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 9 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1804.09337 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1804.09337 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1804.09337 |
| primary_location.id | pmh:oai:arXiv.org:1804.09337 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1804.09337 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1804.09337 |
| publication_date | 2018-04-25 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2145023731, https://openalex.org/W2953139137, https://openalex.org/W1817277359, https://openalex.org/W2952856735, https://openalex.org/W2951527505, https://openalex.org/W2963881378, https://openalex.org/W2630837129, https://openalex.org/W2952596663, https://openalex.org/W2508741746, https://openalex.org/W2752782242, https://openalex.org/W2950015165, https://openalex.org/W2158865742, https://openalex.org/W2737258237, https://openalex.org/W2560622558, https://openalex.org/W2607333215, https://openalex.org/W2952865063, https://openalex.org/W2598666589, https://openalex.org/W2618200950, https://openalex.org/W2117539524, https://openalex.org/W2737312250, https://openalex.org/W2952632681, https://openalex.org/W1799366690, https://openalex.org/W1923697677, https://openalex.org/W2952029950, https://openalex.org/W1901129140, https://openalex.org/W2302255633, https://openalex.org/W2949650786, https://openalex.org/W2179352600, https://openalex.org/W2286929393, https://openalex.org/W2111077768, https://openalex.org/W2950510876, https://openalex.org/W2558580397, https://openalex.org/W2144794286 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 25, 49, 69 |
| abstract_inverted_index.To | 18 |
| abstract_inverted_index.of | 3, 11, 77 |
| abstract_inverted_index.on | 86, 97, 105 |
| abstract_inverted_index.to | 40, 60, 72 |
| abstract_inverted_index.we | 23, 46, 67, 90 |
| abstract_inverted_index.IOU | 96, 104 |
| abstract_inverted_index.VOC | 99 |
| abstract_inverted_index.and | 15, 36, 56, 101 |
| abstract_inverted_index.our | 87 |
| abstract_inverted_index.the | 42, 62, 74 |
| abstract_inverted_index.two | 9, 21, 32 |
| abstract_inverted_index.2012 | 100 |
| abstract_inverted_index.DFN, | 89 |
| abstract_inverted_index.Most | 0 |
| abstract_inverted_index.deep | 81 |
| abstract_inverted_index.from | 8 |
| abstract_inverted_index.make | 73 |
| abstract_inverted_index.mean | 95, 103 |
| abstract_inverted_index.more | 63 |
| abstract_inverted_index.with | 52, 80 |
| abstract_inverted_index.80.3% | 102 |
| abstract_inverted_index.86.2% | 94 |
| abstract_inverted_index.Based | 85 |
| abstract_inverted_index.Block | 55 |
| abstract_inverted_index.still | 6 |
| abstract_inverted_index.these | 20 |
| abstract_inverted_index.which | 30 |
| abstract_inverted_index.(DFN), | 29 |
| abstract_inverted_index.Border | 37, 70 |
| abstract_inverted_index.PASCAL | 98 |
| abstract_inverted_index.Smooth | 34, 50 |
| abstract_inverted_index.design | 48 |
| abstract_inverted_index.global | 57 |
| abstract_inverted_index.handle | 41 |
| abstract_inverted_index.select | 61 |
| abstract_inverted_index.suffer | 7 |
| abstract_inverted_index.tackle | 19 |
| abstract_inverted_index.Channel | 53 |
| abstract_inverted_index.Feature | 27 |
| abstract_inverted_index.Network | 28, 35, 51, 71 |
| abstract_inverted_index.achieve | 91 |
| abstract_inverted_index.aspects | 10 |
| abstract_inverted_index.average | 58 |
| abstract_inverted_index.methods | 2 |
| abstract_inverted_index.pooling | 59 |
| abstract_inverted_index.propose | 24, 68 |
| abstract_inverted_index.Network. | 38 |
| abstract_inverted_index.boundary | 78, 83 |
| abstract_inverted_index.contains | 31 |
| abstract_inverted_index.dataset. | 107 |
| abstract_inverted_index.existing | 1 |
| abstract_inverted_index.features | 76 |
| abstract_inverted_index.problem, | 45 |
| abstract_inverted_index.proposed | 88 |
| abstract_inverted_index.semantic | 4, 82 |
| abstract_inverted_index.Attention | 54 |
| abstract_inverted_index.bilateral | 75 |
| abstract_inverted_index.features. | 65 |
| abstract_inverted_index.problems, | 22 |
| abstract_inverted_index.specially | 47 |
| abstract_inverted_index.Cityscapes | 106 |
| abstract_inverted_index.challenges: | 12 |
| abstract_inverted_index.inter-class | 16 |
| abstract_inverted_index.intra-class | 13, 43 |
| abstract_inverted_index.performance | 93 |
| abstract_inverted_index.Furthermore, | 66 |
| abstract_inverted_index.segmentation | 5 |
| abstract_inverted_index.supervision. | 84 |
| abstract_inverted_index.Specifically, | 39 |
| abstract_inverted_index.inconsistency | 14, 44 |
| abstract_inverted_index.sub-networks: | 33 |
| abstract_inverted_index.Discriminative | 26 |
| abstract_inverted_index.discriminative | 64 |
| abstract_inverted_index.indistinction. | 17 |
| abstract_inverted_index.distinguishable | 79 |
| abstract_inverted_index.state-of-the-art | 92 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |