Learning a Room with the Occ-SDF Hybrid: Signed Distance Function Mingled with Occupancy Aids Scene Representation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.09152
Implicit neural rendering, which uses signed distance function (SDF) representation with geometric priors (such as depth or surface normal), has led to impressive progress in the surface reconstruction of large-scale scenes. However, applying this method to reconstruct a room-level scene from images may miss structures in low-intensity areas or small and thin objects. We conducted experiments on three datasets to identify limitations of the original color rendering loss and priors-embedded SDF scene representation. We found that the color rendering loss results in optimization bias against low-intensity areas, causing gradient vanishing and leaving these areas unoptimized. To address this issue, we propose a feature-based color rendering loss that utilizes non-zero feature values to bring back optimization signals. Additionally, the SDF representation can be influenced by objects along a ray path, disrupting the monotonic change of SDF values when a single object is present. To counteract this, we explore using the occupancy representation, which encodes each point separately and is unaffected by objects along a querying ray. Our experimental results demonstrate that the joint forces of the feature-based rendering loss and Occ-SDF hybrid representation scheme can provide high-quality reconstruction results, especially in challenging room-level scenarios. The code would be released.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.09152
- https://arxiv.org/pdf/2303.09152
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4327810689
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4327810689Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.09152Digital Object Identifier
- Title
-
Learning a Room with the Occ-SDF Hybrid: Signed Distance Function Mingled with Occupancy Aids Scene RepresentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-16Full publication date if available
- Authors
-
Xiaoyang Lyu, Peng Dai, Zizhang Li, Dongyu Yan, Yi Lin, Yifan Peng, Xiaojuan QiList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.09152Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.09152Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.09152Direct OA link when available
- Concepts
-
Rendering (computer graphics), Computer science, Signed distance function, Artificial intelligence, Computer vision, Representation (politics), Pattern recognition (psychology), Political science, Politics, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4327810689 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.09152 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.09152 |
| ids.openalex | https://openalex.org/W4327810689 |
| fwci | |
| type | preprint |
| title | Learning a Room with the Occ-SDF Hybrid: Signed Distance Function Mingled with Occupancy Aids Scene Representation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T10191 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9948999881744385 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Robotics and Sensor-Based Localization |
| topics[2].id | https://openalex.org/T10052 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9927999973297119 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C205711294 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8474932909011841 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[0].display_name | Rendering (computer graphics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6720727682113647 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C71169176 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6049410104751587 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7512907 |
| concepts[2].display_name | Signed distance function |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5904951095581055 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5376521348953247 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C2776359362 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4598676860332489 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[5].display_name | Representation (politics) |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.35004574060440063 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C17744445 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[7].display_name | Political science |
| concepts[8].id | https://openalex.org/C94625758 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[8].display_name | Politics |
| concepts[9].id | https://openalex.org/C199539241 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[9].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/rendering |
| keywords[0].score | 0.8474932909011841 |
| keywords[0].display_name | Rendering (computer graphics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6720727682113647 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/signed-distance-function |
| keywords[2].score | 0.6049410104751587 |
| keywords[2].display_name | Signed distance function |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5904951095581055 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.5376521348953247 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/representation |
| keywords[5].score | 0.4598676860332489 |
| keywords[5].display_name | Representation (politics) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.35004574060440063 |
| keywords[6].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.09152 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.09152 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.09152 |
| locations[1].id | doi:10.48550/arxiv.2303.09152 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.09152 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5091549331 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-5335-6691 |
| authorships[0].author.display_name | Xiaoyang Lyu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lyu, Xiaoyang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100567764 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Peng Dai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dai, Peng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5022254711 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7818-5162 |
| authorships[2].author.display_name | Zizhang Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Zizhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101935664 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7400-144X |
| authorships[3].author.display_name | Dongyu Yan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yan, Dongyu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5066617875 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7194-5023 |
| authorships[4].author.display_name | Yi Lin |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lin, Yi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101629182 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0667-2599 |
| authorships[5].author.display_name | Yifan Peng |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Peng, Yifan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5102498323 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4285-1626 |
| authorships[6].author.display_name | Xiaojuan Qi |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Qi, Xiaojuan |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.09152 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-03-19T00:00:00 |
| display_name | Learning a Room with the Occ-SDF Hybrid: Signed Distance Function Mingled with Occupancy Aids Scene Representation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W169516377, https://openalex.org/W2164905646, https://openalex.org/W2898479565, https://openalex.org/W2377107237, https://openalex.org/W2461218536, https://openalex.org/W1965641102, https://openalex.org/W2362564488, https://openalex.org/W2351304572, https://openalex.org/W3168921812, https://openalex.org/W2062195135 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.09152 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.09152 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.09152 |
| primary_location.id | pmh:oai:arXiv.org:2303.09152 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.09152 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.09152 |
| publication_date | 2023-03-16 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 37, 101, 126, 137, 162 |
| abstract_inverted_index.To | 95, 142 |
| abstract_inverted_index.We | 53, 73 |
| abstract_inverted_index.as | 14 |
| abstract_inverted_index.be | 121, 196 |
| abstract_inverted_index.by | 123, 159 |
| abstract_inverted_index.in | 24, 45, 81, 189 |
| abstract_inverted_index.is | 140, 157 |
| abstract_inverted_index.of | 28, 62, 133, 173 |
| abstract_inverted_index.on | 56 |
| abstract_inverted_index.or | 16, 48 |
| abstract_inverted_index.to | 21, 35, 59, 111 |
| abstract_inverted_index.we | 99, 145 |
| abstract_inverted_index.Our | 165 |
| abstract_inverted_index.SDF | 70, 118, 134 |
| abstract_inverted_index.The | 193 |
| abstract_inverted_index.and | 50, 68, 90, 156, 178 |
| abstract_inverted_index.can | 120, 183 |
| abstract_inverted_index.has | 19 |
| abstract_inverted_index.led | 20 |
| abstract_inverted_index.may | 42 |
| abstract_inverted_index.ray | 127 |
| abstract_inverted_index.the | 25, 63, 76, 117, 130, 148, 170, 174 |
| abstract_inverted_index.back | 113 |
| abstract_inverted_index.bias | 83 |
| abstract_inverted_index.code | 194 |
| abstract_inverted_index.each | 153 |
| abstract_inverted_index.from | 40 |
| abstract_inverted_index.loss | 67, 79, 105, 177 |
| abstract_inverted_index.miss | 43 |
| abstract_inverted_index.ray. | 164 |
| abstract_inverted_index.that | 75, 106, 169 |
| abstract_inverted_index.thin | 51 |
| abstract_inverted_index.this | 33, 97 |
| abstract_inverted_index.uses | 4 |
| abstract_inverted_index.when | 136 |
| abstract_inverted_index.with | 10 |
| abstract_inverted_index.(SDF) | 8 |
| abstract_inverted_index.(such | 13 |
| abstract_inverted_index.along | 125, 161 |
| abstract_inverted_index.areas | 47, 93 |
| abstract_inverted_index.bring | 112 |
| abstract_inverted_index.color | 65, 77, 103 |
| abstract_inverted_index.depth | 15 |
| abstract_inverted_index.found | 74 |
| abstract_inverted_index.joint | 171 |
| abstract_inverted_index.path, | 128 |
| abstract_inverted_index.point | 154 |
| abstract_inverted_index.scene | 39, 71 |
| abstract_inverted_index.small | 49 |
| abstract_inverted_index.these | 92 |
| abstract_inverted_index.this, | 144 |
| abstract_inverted_index.three | 57 |
| abstract_inverted_index.using | 147 |
| abstract_inverted_index.which | 3, 151 |
| abstract_inverted_index.would | 195 |
| abstract_inverted_index.areas, | 86 |
| abstract_inverted_index.change | 132 |
| abstract_inverted_index.forces | 172 |
| abstract_inverted_index.hybrid | 180 |
| abstract_inverted_index.images | 41 |
| abstract_inverted_index.issue, | 98 |
| abstract_inverted_index.method | 34 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.object | 139 |
| abstract_inverted_index.priors | 12 |
| abstract_inverted_index.scheme | 182 |
| abstract_inverted_index.signed | 5 |
| abstract_inverted_index.single | 138 |
| abstract_inverted_index.values | 110, 135 |
| abstract_inverted_index.Occ-SDF | 179 |
| abstract_inverted_index.address | 96 |
| abstract_inverted_index.against | 84 |
| abstract_inverted_index.causing | 87 |
| abstract_inverted_index.encodes | 152 |
| abstract_inverted_index.explore | 146 |
| abstract_inverted_index.feature | 109 |
| abstract_inverted_index.leaving | 91 |
| abstract_inverted_index.objects | 124, 160 |
| abstract_inverted_index.propose | 100 |
| abstract_inverted_index.provide | 184 |
| abstract_inverted_index.results | 80, 167 |
| abstract_inverted_index.scenes. | 30 |
| abstract_inverted_index.surface | 17, 26 |
| abstract_inverted_index.However, | 31 |
| abstract_inverted_index.Implicit | 0 |
| abstract_inverted_index.applying | 32 |
| abstract_inverted_index.datasets | 58 |
| abstract_inverted_index.distance | 6 |
| abstract_inverted_index.function | 7 |
| abstract_inverted_index.gradient | 88 |
| abstract_inverted_index.identify | 60 |
| abstract_inverted_index.non-zero | 108 |
| abstract_inverted_index.normal), | 18 |
| abstract_inverted_index.objects. | 52 |
| abstract_inverted_index.original | 64 |
| abstract_inverted_index.present. | 141 |
| abstract_inverted_index.progress | 23 |
| abstract_inverted_index.querying | 163 |
| abstract_inverted_index.results, | 187 |
| abstract_inverted_index.signals. | 115 |
| abstract_inverted_index.utilizes | 107 |
| abstract_inverted_index.conducted | 54 |
| abstract_inverted_index.geometric | 11 |
| abstract_inverted_index.monotonic | 131 |
| abstract_inverted_index.occupancy | 149 |
| abstract_inverted_index.released. | 197 |
| abstract_inverted_index.rendering | 66, 78, 104, 176 |
| abstract_inverted_index.vanishing | 89 |
| abstract_inverted_index.counteract | 143 |
| abstract_inverted_index.disrupting | 129 |
| abstract_inverted_index.especially | 188 |
| abstract_inverted_index.impressive | 22 |
| abstract_inverted_index.influenced | 122 |
| abstract_inverted_index.rendering, | 2 |
| abstract_inverted_index.room-level | 38, 191 |
| abstract_inverted_index.scenarios. | 192 |
| abstract_inverted_index.separately | 155 |
| abstract_inverted_index.structures | 44 |
| abstract_inverted_index.unaffected | 158 |
| abstract_inverted_index.challenging | 190 |
| abstract_inverted_index.demonstrate | 168 |
| abstract_inverted_index.experiments | 55 |
| abstract_inverted_index.large-scale | 29 |
| abstract_inverted_index.limitations | 61 |
| abstract_inverted_index.reconstruct | 36 |
| abstract_inverted_index.experimental | 166 |
| abstract_inverted_index.high-quality | 185 |
| abstract_inverted_index.optimization | 82, 114 |
| abstract_inverted_index.unoptimized. | 94 |
| abstract_inverted_index.Additionally, | 116 |
| abstract_inverted_index.feature-based | 102, 175 |
| abstract_inverted_index.low-intensity | 46, 85 |
| abstract_inverted_index.reconstruction | 27, 186 |
| abstract_inverted_index.representation | 9, 119, 181 |
| abstract_inverted_index.priors-embedded | 69 |
| abstract_inverted_index.representation, | 150 |
| abstract_inverted_index.representation. | 72 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |