Learning Adaptive Quantization Parameter for Consistent Quality Oriented Video Coding Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202310.1985.v1
In industry 4.0 era, video applications such as surveillance visual systems, video conferencing, or video broadcasting have been playing a vital role. In these applications, for manipulating and tracking objects in decoded video, the quality of decoded video should be consistent because it largely affects to the performance of the machine analysis. To cope with this problem, we propose a novel perceptual video coding (PVC) solution in which a full reference quality metric named Video Multimethod Assessment Fusion (VMAF) is employed together with a deep convolutional neural network (CNN) to obtain the consistent quality while still achieving the high compression performance. First of all, to achieve the consistent quality requirement, we propose a CNN model with an expected VMAF as input to adaptively adjust the quantization parameters (QP) for each coding block. Afterwards, to increase the compression performance, a Lagrange coefficient of Rate-Distortion optimization (RDO) mechanism is adaptively computed under Rate-QP and Quality-QP models. Experimental results show that the proposed PVC has achieved two targets simultaneously: the quality of video sequence is kept consistently with an expected quality level and the bit rate saving of the proposed method is higher than traditional video coding standards and relevant benchmark, notably with around 10% bitrate saving in average.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202310.1985.v1
- https://www.preprints.org/manuscript/202310.1985/v1/download
- OA Status
- green
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388134597
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388134597Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202310.1985.v1Digital Object Identifier
- Title
-
Learning Adaptive Quantization Parameter for Consistent Quality Oriented Video CodingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-31Full publication date if available
- Authors
-
Tien Vu Huu, Minh Ngoc, Sang Quang Nguyen, Huy Phi Cong, Thipphaphone Sisouvong, Xiem Van HoangList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202310.1985.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/manuscript/202310.1985/v1/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/manuscript/202310.1985/v1/downloadDirect OA link when available
- Concepts
-
Computer science, Video quality, Rate–distortion optimization, Multiview Video Coding, Quantization (signal processing), Artificial intelligence, Coding (social sciences), Convolutional neural network, Data compression, Video compression picture types, Video tracking, Coding tree unit, Computer vision, Real-time computing, Algorithm, Video processing, Metric (unit), Decoding methods, Mathematics, Economics, Operations management, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388134597 |
|---|---|
| doi | https://doi.org/10.20944/preprints202310.1985.v1 |
| ids.doi | https://doi.org/10.20944/preprints202310.1985.v1 |
| ids.openalex | https://openalex.org/W4388134597 |
| fwci | 0.0 |
| type | preprint |
| title | Learning Adaptive Quantization Parameter for Consistent Quality Oriented Video Coding |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11165 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Video Quality Assessment |
| topics[1].id | https://openalex.org/T11105 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image Processing Techniques |
| topics[2].id | https://openalex.org/T11605 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9972000122070312 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Visual Attention and Saliency Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8130756616592407 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C103910844 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7711573839187622 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2631256 |
| concepts[1].display_name | Video quality |
| concepts[2].id | https://openalex.org/C50056821 |
| concepts[2].level | 5 |
| concepts[2].score | 0.650596022605896 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q774502 |
| concepts[2].display_name | Rate–distortion optimization |
| concepts[3].id | https://openalex.org/C23431618 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6014090776443481 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1404672 |
| concepts[3].display_name | Multiview Video Coding |
| concepts[4].id | https://openalex.org/C28855332 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5582049489021301 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q198099 |
| concepts[4].display_name | Quantization (signal processing) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5334337949752808 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C179518139 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5094082951545715 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5140297 |
| concepts[6].display_name | Coding (social sciences) |
| concepts[7].id | https://openalex.org/C81363708 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4876607656478882 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[7].display_name | Convolutional neural network |
| concepts[8].id | https://openalex.org/C78548338 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4762589931488037 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[8].display_name | Data compression |
| concepts[9].id | https://openalex.org/C106030495 |
| concepts[9].level | 4 |
| concepts[9].score | 0.4658563733100891 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1797012 |
| concepts[9].display_name | Video compression picture types |
| concepts[10].id | https://openalex.org/C202474056 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4558171331882477 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1931635 |
| concepts[10].display_name | Video tracking |
| concepts[11].id | https://openalex.org/C190750250 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4346485435962677 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q13533439 |
| concepts[11].display_name | Coding tree unit |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.41608792543411255 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C79403827 |
| concepts[13].level | 1 |
| concepts[13].score | 0.38873857259750366 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[13].display_name | Real-time computing |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3830716013908386 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C65483669 |
| concepts[15].level | 2 |
| concepts[15].score | 0.34349870681762695 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3536669 |
| concepts[15].display_name | Video processing |
| concepts[16].id | https://openalex.org/C176217482 |
| concepts[16].level | 2 |
| concepts[16].score | 0.27032577991485596 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[16].display_name | Metric (unit) |
| concepts[17].id | https://openalex.org/C57273362 |
| concepts[17].level | 2 |
| concepts[17].score | 0.19851461052894592 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[17].display_name | Decoding methods |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.1085439920425415 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C21547014 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[20].display_name | Operations management |
| concepts[21].id | https://openalex.org/C105795698 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[21].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8130756616592407 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/video-quality |
| keywords[1].score | 0.7711573839187622 |
| keywords[1].display_name | Video quality |
| keywords[2].id | https://openalex.org/keywords/rate–distortion-optimization |
| keywords[2].score | 0.650596022605896 |
| keywords[2].display_name | Rate–distortion optimization |
| keywords[3].id | https://openalex.org/keywords/multiview-video-coding |
| keywords[3].score | 0.6014090776443481 |
| keywords[3].display_name | Multiview Video Coding |
| keywords[4].id | https://openalex.org/keywords/quantization |
| keywords[4].score | 0.5582049489021301 |
| keywords[4].display_name | Quantization (signal processing) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5334337949752808 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/coding |
| keywords[6].score | 0.5094082951545715 |
| keywords[6].display_name | Coding (social sciences) |
| keywords[7].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[7].score | 0.4876607656478882 |
| keywords[7].display_name | Convolutional neural network |
| keywords[8].id | https://openalex.org/keywords/data-compression |
| keywords[8].score | 0.4762589931488037 |
| keywords[8].display_name | Data compression |
| keywords[9].id | https://openalex.org/keywords/video-compression-picture-types |
| keywords[9].score | 0.4658563733100891 |
| keywords[9].display_name | Video compression picture types |
| keywords[10].id | https://openalex.org/keywords/video-tracking |
| keywords[10].score | 0.4558171331882477 |
| keywords[10].display_name | Video tracking |
| keywords[11].id | https://openalex.org/keywords/coding-tree-unit |
| keywords[11].score | 0.4346485435962677 |
| keywords[11].display_name | Coding tree unit |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.41608792543411255 |
| keywords[12].display_name | Computer vision |
| keywords[13].id | https://openalex.org/keywords/real-time-computing |
| keywords[13].score | 0.38873857259750366 |
| keywords[13].display_name | Real-time computing |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.3830716013908386 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/video-processing |
| keywords[15].score | 0.34349870681762695 |
| keywords[15].display_name | Video processing |
| keywords[16].id | https://openalex.org/keywords/metric |
| keywords[16].score | 0.27032577991485596 |
| keywords[16].display_name | Metric (unit) |
| keywords[17].id | https://openalex.org/keywords/decoding-methods |
| keywords[17].score | 0.19851461052894592 |
| keywords[17].display_name | Decoding methods |
| keywords[18].id | https://openalex.org/keywords/mathematics |
| keywords[18].score | 0.1085439920425415 |
| keywords[18].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.20944/preprints202310.1985.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/manuscript/202310.1985/v1/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202310.1985.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5038405076 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2736-2194 |
| authorships[0].author.display_name | Tien Vu Huu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tien Huu Vu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5071303273 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1758-0673 |
| authorships[1].author.display_name | Minh Ngoc |
| authorships[1].countries | VN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I123565023 |
| authorships[1].affiliations[0].raw_affiliation_string | Vietnam National University -University of Engineering and Technology , Vietnam |
| authorships[1].institutions[0].id | https://openalex.org/I123565023 |
| authorships[1].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[1].institutions[0].country_code | VN |
| authorships[1].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Minh Ngoc Do |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Vietnam National University -University of Engineering and Technology , Vietnam |
| authorships[2].author.id | https://openalex.org/A5032941002 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1798-2296 |
| authorships[2].author.display_name | Sang Quang Nguyen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sang Quang Nguyen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5006235489 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4047-541X |
| authorships[3].author.display_name | Huy Phi Cong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huy Cong Phi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5053988337 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Thipphaphone Sisouvong |
| authorships[4].countries | VN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210095603, https://openalex.org/I4400600977 |
| authorships[4].affiliations[0].raw_affiliation_string | Posts and Telecommunications Institute of Technology, Vietnam |
| authorships[4].institutions[0].id | https://openalex.org/I4400600977 |
| authorships[4].institutions[0].ror | https://ror.org/0363rtq22 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4400600977 |
| authorships[4].institutions[0].country_code | |
| authorships[4].institutions[0].display_name | Posts and Telecommunications Institute of Technology |
| authorships[4].institutions[1].id | https://openalex.org/I4210095603 |
| authorships[4].institutions[1].ror | https://ror.org/00q0e7f94 |
| authorships[4].institutions[1].type | company |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210095603 |
| authorships[4].institutions[1].country_code | VN |
| authorships[4].institutions[1].display_name | Vietnam Posts and Telecommunications Group (Vietnam) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Thipphaphone Sisouvong |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Posts and Telecommunications Institute of Technology, Vietnam |
| authorships[5].author.id | https://openalex.org/A5042882401 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Xiem Van Hoang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Xiem Van Hoang |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/manuscript/202310.1985/v1/download |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Adaptive Quantization Parameter for Consistent Quality Oriented Video Coding |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11165 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Video Quality Assessment |
| related_works | https://openalex.org/W2905230337, https://openalex.org/W2045735464, https://openalex.org/W1645708266, https://openalex.org/W2029442830, https://openalex.org/W1982720242, https://openalex.org/W1505485478, https://openalex.org/W1982753840, https://openalex.org/W2099031831, https://openalex.org/W101275777, https://openalex.org/W2123694428 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202310.1985.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/manuscript/202310.1985/v1/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202310.1985.v1 |
| primary_location.id | doi:10.20944/preprints202310.1985.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/manuscript/202310.1985/v1/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202310.1985.v1 |
| publication_date | 2023-10-31 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2566053671, https://openalex.org/W2040064936, https://openalex.org/W2327261637, https://openalex.org/W1993980931, https://openalex.org/W2112693531, https://openalex.org/W2100986123, https://openalex.org/W1982776753, https://openalex.org/W2943769402, https://openalex.org/W1997706589, https://openalex.org/W2128012316, https://openalex.org/W2046119925, https://openalex.org/W2117804578, https://openalex.org/W2737019897, https://openalex.org/W2790627377, https://openalex.org/W2809031010, https://openalex.org/W3113596896, https://openalex.org/W3161269972, https://openalex.org/W3010458743, https://openalex.org/W2195682172, https://openalex.org/W4309325634, https://openalex.org/W2169161136, https://openalex.org/W2009707700, https://openalex.org/W2044961321, https://openalex.org/W2133665775, https://openalex.org/W3137448169, https://openalex.org/W3184688289, https://openalex.org/W1686810756, https://openalex.org/W2101700394, https://openalex.org/W4307020218, https://openalex.org/W2425240487 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 19, 59, 68, 83, 112, 138 |
| abstract_inverted_index.In | 0, 22 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.an | 116, 175 |
| abstract_inverted_index.as | 7, 119 |
| abstract_inverted_index.be | 39 |
| abstract_inverted_index.in | 30, 66, 204 |
| abstract_inverted_index.is | 79, 146, 171, 188 |
| abstract_inverted_index.it | 42 |
| abstract_inverted_index.of | 35, 48, 102, 141, 168, 184 |
| abstract_inverted_index.or | 13 |
| abstract_inverted_index.to | 45, 89, 104, 121, 133 |
| abstract_inverted_index.we | 57, 110 |
| abstract_inverted_index.10% | 201 |
| abstract_inverted_index.4.0 | 2 |
| abstract_inverted_index.CNN | 113 |
| abstract_inverted_index.PVC | 160 |
| abstract_inverted_index.and | 27, 151, 179, 195 |
| abstract_inverted_index.bit | 181 |
| abstract_inverted_index.for | 25, 128 |
| abstract_inverted_index.has | 161 |
| abstract_inverted_index.the | 33, 46, 49, 91, 97, 106, 124, 135, 158, 166, 180, 185 |
| abstract_inverted_index.two | 163 |
| abstract_inverted_index.(QP) | 127 |
| abstract_inverted_index.VMAF | 118 |
| abstract_inverted_index.all, | 103 |
| abstract_inverted_index.been | 17 |
| abstract_inverted_index.cope | 53 |
| abstract_inverted_index.deep | 84 |
| abstract_inverted_index.each | 129 |
| abstract_inverted_index.era, | 3 |
| abstract_inverted_index.full | 69 |
| abstract_inverted_index.have | 16 |
| abstract_inverted_index.high | 98 |
| abstract_inverted_index.kept | 172 |
| abstract_inverted_index.rate | 182 |
| abstract_inverted_index.show | 156 |
| abstract_inverted_index.such | 6 |
| abstract_inverted_index.than | 190 |
| abstract_inverted_index.that | 157 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.with | 54, 82, 115, 174, 199 |
| abstract_inverted_index.(CNN) | 88 |
| abstract_inverted_index.(PVC) | 64 |
| abstract_inverted_index.(RDO) | 144 |
| abstract_inverted_index.First | 101 |
| abstract_inverted_index.Video | 74 |
| abstract_inverted_index.input | 120 |
| abstract_inverted_index.level | 178 |
| abstract_inverted_index.model | 114 |
| abstract_inverted_index.named | 73 |
| abstract_inverted_index.novel | 60 |
| abstract_inverted_index.role. | 21 |
| abstract_inverted_index.still | 95 |
| abstract_inverted_index.these | 23 |
| abstract_inverted_index.under | 149 |
| abstract_inverted_index.video | 4, 11, 14, 37, 62, 169, 192 |
| abstract_inverted_index.vital | 20 |
| abstract_inverted_index.which | 67 |
| abstract_inverted_index.while | 94 |
| abstract_inverted_index.(VMAF) | 78 |
| abstract_inverted_index.Fusion | 77 |
| abstract_inverted_index.adjust | 123 |
| abstract_inverted_index.around | 200 |
| abstract_inverted_index.block. | 131 |
| abstract_inverted_index.coding | 63, 130, 193 |
| abstract_inverted_index.higher | 189 |
| abstract_inverted_index.method | 187 |
| abstract_inverted_index.metric | 72 |
| abstract_inverted_index.neural | 86 |
| abstract_inverted_index.obtain | 90 |
| abstract_inverted_index.saving | 183, 203 |
| abstract_inverted_index.should | 38 |
| abstract_inverted_index.video, | 32 |
| abstract_inverted_index.visual | 9 |
| abstract_inverted_index.Rate-QP | 150 |
| abstract_inverted_index.achieve | 105 |
| abstract_inverted_index.affects | 44 |
| abstract_inverted_index.because | 41 |
| abstract_inverted_index.bitrate | 202 |
| abstract_inverted_index.decoded | 31, 36 |
| abstract_inverted_index.largely | 43 |
| abstract_inverted_index.machine | 50 |
| abstract_inverted_index.models. | 153 |
| abstract_inverted_index.network | 87 |
| abstract_inverted_index.notably | 198 |
| abstract_inverted_index.objects | 29 |
| abstract_inverted_index.playing | 18 |
| abstract_inverted_index.propose | 58, 111 |
| abstract_inverted_index.quality | 34, 71, 93, 108, 167, 177 |
| abstract_inverted_index.results | 155 |
| abstract_inverted_index.targets | 164 |
| abstract_inverted_index.Lagrange | 139 |
| abstract_inverted_index.achieved | 162 |
| abstract_inverted_index.average. | 205 |
| abstract_inverted_index.computed | 148 |
| abstract_inverted_index.employed | 80 |
| abstract_inverted_index.expected | 117, 176 |
| abstract_inverted_index.increase | 134 |
| abstract_inverted_index.industry | 1 |
| abstract_inverted_index.problem, | 56 |
| abstract_inverted_index.proposed | 159, 186 |
| abstract_inverted_index.relevant | 196 |
| abstract_inverted_index.sequence | 170 |
| abstract_inverted_index.solution | 65 |
| abstract_inverted_index.systems, | 10 |
| abstract_inverted_index.together | 81 |
| abstract_inverted_index.tracking | 28 |
| abstract_inverted_index.achieving | 96 |
| abstract_inverted_index.analysis. | 51 |
| abstract_inverted_index.mechanism | 145 |
| abstract_inverted_index.reference | 70 |
| abstract_inverted_index.standards | 194 |
| abstract_inverted_index.Assessment | 76 |
| abstract_inverted_index.Quality-QP | 152 |
| abstract_inverted_index.adaptively | 122, 147 |
| abstract_inverted_index.benchmark, | 197 |
| abstract_inverted_index.consistent | 40, 92, 107 |
| abstract_inverted_index.parameters | 126 |
| abstract_inverted_index.perceptual | 61 |
| abstract_inverted_index.Afterwards, | 132 |
| abstract_inverted_index.Multimethod | 75 |
| abstract_inverted_index.coefficient | 140 |
| abstract_inverted_index.compression | 99, 136 |
| abstract_inverted_index.performance | 47 |
| abstract_inverted_index.traditional | 191 |
| abstract_inverted_index.Experimental | 154 |
| abstract_inverted_index.applications | 5 |
| abstract_inverted_index.broadcasting | 15 |
| abstract_inverted_index.consistently | 173 |
| abstract_inverted_index.manipulating | 26 |
| abstract_inverted_index.optimization | 143 |
| abstract_inverted_index.performance, | 137 |
| abstract_inverted_index.performance. | 100 |
| abstract_inverted_index.quantization | 125 |
| abstract_inverted_index.requirement, | 109 |
| abstract_inverted_index.surveillance | 8 |
| abstract_inverted_index.applications, | 24 |
| abstract_inverted_index.conferencing, | 12 |
| abstract_inverted_index.convolutional | 85 |
| abstract_inverted_index.Rate-Distortion | 142 |
| abstract_inverted_index.simultaneously: | 165 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.16581623 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |