Learning Attribute-Aware Hash Codes for Fine-Grained Image Retrieval via Query Optimization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.17049
Fine-grained hashing has become a powerful solution for rapid and efficient image retrieval, particularly in scenarios requiring high discrimination between visually similar categories. To enable each hash bit to correspond to specific visual attributes, we propoe a novel method that harnesses learnable queries for attribute-aware hash codes learning. This method deploys a tailored set of queries to capture and represent nuanced attribute-level information within the hashing process, thereby enhancing both the interpretability and relevance of each hash bit. Building on this query-based optimization framework, we incorporate an auxiliary branch to help alleviate the challenges of complex landscape optimization often encountered with low-bit hash codes. This auxiliary branch models high-order attribute interactions, reinforcing the robustness and specificity of the generated hash codes. Experimental results on benchmark datasets demonstrate that our method generates attribute-aware hash codes and consistently outperforms state-of-the-art techniques in retrieval accuracy and robustness, especially for low-bit hash codes, underscoring its potential in fine-grained image hashing tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.17049
- https://arxiv.org/pdf/2509.17049
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415252798
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415252798Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.17049Digital Object Identifier
- Title
-
Learning Attribute-Aware Hash Codes for Fine-Grained Image Retrieval via Query OptimizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-21Full publication date if available
- Authors
-
Peng Wang, Yong Li, Lin Zhao, Xiu-Shen WeiList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.17049Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.17049Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.17049Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415252798 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.17049 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.17049 |
| ids.openalex | https://openalex.org/W4415252798 |
| fwci | |
| type | preprint |
| title | Learning Attribute-Aware Hash Codes for Fine-Grained Image Retrieval via Query Optimization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10627 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image and Video Retrieval Techniques |
| topics[1].id | https://openalex.org/T10824 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9866999983787537 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Retrieval and Classification Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.17049 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.17049 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.17049 |
| locations[1].id | doi:10.48550/arxiv.2509.17049 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.17049 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100396163 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4972-1231 |
| authorships[0].author.display_name | Peng Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Peng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103198945 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-3974-1078 |
| authorships[1].author.display_name | Yong Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Yong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5110277601 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5414-9239 |
| authorships[2].author.display_name | Lin Zhao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhao, Lin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5066964304 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8200-1845 |
| authorships[3].author.display_name | Xiu-Shen Wei |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wei, Xiu-Shen |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.17049 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-16T00:00:00 |
| display_name | Learning Attribute-Aware Hash Codes for Fine-Grained Image Retrieval via Query Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10627 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image and Video Retrieval Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.17049 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.17049 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.17049 |
| primary_location.id | pmh:oai:arXiv.org:2509.17049 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.17049 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.17049 |
| publication_date | 2025-09-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 36, 51 |
| abstract_inverted_index.To | 23 |
| abstract_inverted_index.an | 86 |
| abstract_inverted_index.in | 14, 139, 152 |
| abstract_inverted_index.of | 54, 74, 94, 116 |
| abstract_inverted_index.on | 79, 123 |
| abstract_inverted_index.to | 28, 30, 56, 89 |
| abstract_inverted_index.we | 34, 84 |
| abstract_inverted_index.and | 9, 58, 72, 114, 134, 142 |
| abstract_inverted_index.bit | 27 |
| abstract_inverted_index.for | 7, 43, 145 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.its | 150 |
| abstract_inverted_index.our | 128 |
| abstract_inverted_index.set | 53 |
| abstract_inverted_index.the | 64, 70, 92, 112, 117 |
| abstract_inverted_index.This | 48, 104 |
| abstract_inverted_index.bit. | 77 |
| abstract_inverted_index.both | 69 |
| abstract_inverted_index.each | 25, 75 |
| abstract_inverted_index.hash | 26, 45, 76, 102, 119, 132, 147 |
| abstract_inverted_index.help | 90 |
| abstract_inverted_index.high | 17 |
| abstract_inverted_index.that | 39, 127 |
| abstract_inverted_index.this | 80 |
| abstract_inverted_index.with | 100 |
| abstract_inverted_index.codes | 46, 133 |
| abstract_inverted_index.image | 11, 154 |
| abstract_inverted_index.novel | 37 |
| abstract_inverted_index.often | 98 |
| abstract_inverted_index.rapid | 8 |
| abstract_inverted_index.become | 3 |
| abstract_inverted_index.branch | 88, 106 |
| abstract_inverted_index.codes, | 148 |
| abstract_inverted_index.codes. | 103, 120 |
| abstract_inverted_index.enable | 24 |
| abstract_inverted_index.method | 38, 49, 129 |
| abstract_inverted_index.models | 107 |
| abstract_inverted_index.propoe | 35 |
| abstract_inverted_index.tasks. | 156 |
| abstract_inverted_index.visual | 32 |
| abstract_inverted_index.within | 63 |
| abstract_inverted_index.between | 19 |
| abstract_inverted_index.capture | 57 |
| abstract_inverted_index.complex | 95 |
| abstract_inverted_index.deploys | 50 |
| abstract_inverted_index.hashing | 1, 65, 155 |
| abstract_inverted_index.low-bit | 101, 146 |
| abstract_inverted_index.nuanced | 60 |
| abstract_inverted_index.queries | 42, 55 |
| abstract_inverted_index.results | 122 |
| abstract_inverted_index.similar | 21 |
| abstract_inverted_index.thereby | 67 |
| abstract_inverted_index.Building | 78 |
| abstract_inverted_index.accuracy | 141 |
| abstract_inverted_index.datasets | 125 |
| abstract_inverted_index.powerful | 5 |
| abstract_inverted_index.process, | 66 |
| abstract_inverted_index.solution | 6 |
| abstract_inverted_index.specific | 31 |
| abstract_inverted_index.tailored | 52 |
| abstract_inverted_index.visually | 20 |
| abstract_inverted_index.alleviate | 91 |
| abstract_inverted_index.attribute | 109 |
| abstract_inverted_index.auxiliary | 87, 105 |
| abstract_inverted_index.benchmark | 124 |
| abstract_inverted_index.efficient | 10 |
| abstract_inverted_index.enhancing | 68 |
| abstract_inverted_index.generated | 118 |
| abstract_inverted_index.generates | 130 |
| abstract_inverted_index.harnesses | 40 |
| abstract_inverted_index.landscape | 96 |
| abstract_inverted_index.learnable | 41 |
| abstract_inverted_index.learning. | 47 |
| abstract_inverted_index.potential | 151 |
| abstract_inverted_index.relevance | 73 |
| abstract_inverted_index.represent | 59 |
| abstract_inverted_index.requiring | 16 |
| abstract_inverted_index.retrieval | 140 |
| abstract_inverted_index.scenarios | 15 |
| abstract_inverted_index.challenges | 93 |
| abstract_inverted_index.correspond | 29 |
| abstract_inverted_index.especially | 144 |
| abstract_inverted_index.framework, | 83 |
| abstract_inverted_index.high-order | 108 |
| abstract_inverted_index.retrieval, | 12 |
| abstract_inverted_index.robustness | 113 |
| abstract_inverted_index.techniques | 138 |
| abstract_inverted_index.attributes, | 33 |
| abstract_inverted_index.categories. | 22 |
| abstract_inverted_index.demonstrate | 126 |
| abstract_inverted_index.encountered | 99 |
| abstract_inverted_index.incorporate | 85 |
| abstract_inverted_index.information | 62 |
| abstract_inverted_index.outperforms | 136 |
| abstract_inverted_index.query-based | 81 |
| abstract_inverted_index.reinforcing | 111 |
| abstract_inverted_index.robustness, | 143 |
| abstract_inverted_index.specificity | 115 |
| abstract_inverted_index.Experimental | 121 |
| abstract_inverted_index.Fine-grained | 0 |
| abstract_inverted_index.consistently | 135 |
| abstract_inverted_index.fine-grained | 153 |
| abstract_inverted_index.optimization | 82, 97 |
| abstract_inverted_index.particularly | 13 |
| abstract_inverted_index.underscoring | 149 |
| abstract_inverted_index.interactions, | 110 |
| abstract_inverted_index.discrimination | 18 |
| abstract_inverted_index.attribute-aware | 44, 131 |
| abstract_inverted_index.attribute-level | 61 |
| abstract_inverted_index.interpretability | 71 |
| abstract_inverted_index.state-of-the-art | 137 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |