Learning-based multi-agent MPC for irrigation scheduling Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.conengprac.2024.105908
Amid concerns about freshwater scarcity, the agricultural sector faces challenges in water conservation and optimizing crop yields, highlighting the limitations of traditional irrigation scheduling methods. To overcome these challenges, this paper introduces a unified, learning-based predictive irrigation scheduler that integrates machine learning and Model Predictive Control (MPC), while also incorporating multi-agent principles. The proposed framework incorporates a three-stage management zone delineation process, utilizing k-means clustering and hydraulic parameters estimates for optimized agro-hydrological modeling. Long Short-Term Memory (LSTM) networks are employed for accurate and computationally efficient root zone soil moisture modeling. The scheduler, formulated as a mixed-integer MPC with zone control, utilizes the identified LSTM networks to maximize root water uptake while minimizing overall water consumption and fixed irrigation costs. Additionally, the learning-based scheduler adopts a multi-agent MPC paradigm, where decentralized hybrid actor–critic agents and the concept of a limiting irrigation management zone are employed to enhance computational efficiency. Evaluating the performance on a 26.4-hectare field in Lethbridge for the 2015 and 2022 growing seasons demonstrates the superiority of the proposed scheduler over the widely-used triggered scheduling approach in terms of Irrigation Water Use Efficiency (IWUE) and total prescribed irrigation. Notably, the proposed approach achieves water savings between 7 to 23%, coupled with IWUE increases ranging from 10 to 35%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.conengprac.2024.105908
- OA Status
- hybrid
- Cited By
- 15
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392682412
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392682412Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.conengprac.2024.105908Digital Object Identifier
- Title
-
Learning-based multi-agent MPC for irrigation schedulingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-12Full publication date if available
- Authors
-
Bernard T. Agyeman, Mohamed Naouri, Willemijn M. Appels, Jinfeng Liu, Sirish L. ShahList of authors in order
- Landing page
-
https://doi.org/10.1016/j.conengprac.2024.105908Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.conengprac.2024.105908Direct OA link when available
- Concepts
-
Irrigation scheduling, Computer science, Scheduling (production processes), Model predictive control, Scarcity, Irrigation, Agricultural engineering, Mathematical optimization, Control (management), Artificial intelligence, Engineering, Mathematics, Biology, Microeconomics, Economics, EcologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 6Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392682412 |
|---|---|
| doi | https://doi.org/10.1016/j.conengprac.2024.105908 |
| ids.doi | https://doi.org/10.1016/j.conengprac.2024.105908 |
| ids.openalex | https://openalex.org/W4392682412 |
| fwci | 10.46220968 |
| type | article |
| title | Learning-based multi-agent MPC for irrigation scheduling |
| biblio.issue | |
| biblio.volume | 147 |
| biblio.last_page | 105908 |
| biblio.first_page | 105908 |
| topics[0].id | https://openalex.org/T11404 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9918000102043152 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1111 |
| topics[0].subfield.display_name | Soil Science |
| topics[0].display_name | Irrigation Practices and Water Management |
| topics[1].id | https://openalex.org/T10791 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9912999868392944 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Advanced Control Systems Optimization |
| topics[2].id | https://openalex.org/T10969 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9861000180244446 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Water resources management and optimization |
| funders[0].id | https://openalex.org/F4320325651 |
| funders[0].ror | |
| funders[0].display_name | Alberta Innovates |
| funders[1].id | https://openalex.org/F4320334593 |
| funders[1].ror | https://ror.org/01h531d29 |
| funders[1].display_name | Natural Sciences and Engineering Research Council of Canada |
| is_xpac | False |
| apc_list.value | 3070 |
| apc_list.currency | USD |
| apc_list.value_usd | 3070 |
| apc_paid.value | 3070 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3070 |
| concepts[0].id | https://openalex.org/C2777589951 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6667307615280151 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6073845 |
| concepts[0].display_name | Irrigation scheduling |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6294692754745483 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C206729178 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6249703764915466 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2271896 |
| concepts[2].display_name | Scheduling (production processes) |
| concepts[3].id | https://openalex.org/C172205157 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5794856548309326 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1782962 |
| concepts[3].display_name | Model predictive control |
| concepts[4].id | https://openalex.org/C109747225 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4854510426521301 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q815758 |
| concepts[4].display_name | Scarcity |
| concepts[5].id | https://openalex.org/C88862950 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44409245252609253 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11453 |
| concepts[5].display_name | Irrigation |
| concepts[6].id | https://openalex.org/C88463610 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43777328729629517 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q194118 |
| concepts[6].display_name | Agricultural engineering |
| concepts[7].id | https://openalex.org/C126255220 |
| concepts[7].level | 1 |
| concepts[7].score | 0.375969797372818 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[7].display_name | Mathematical optimization |
| concepts[8].id | https://openalex.org/C2775924081 |
| concepts[8].level | 2 |
| concepts[8].score | 0.25590693950653076 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[8].display_name | Control (management) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2496301233768463 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.17460811138153076 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.13281819224357605 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C175444787 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q39072 |
| concepts[13].display_name | Microeconomics |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C18903297 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[15].display_name | Ecology |
| keywords[0].id | https://openalex.org/keywords/irrigation-scheduling |
| keywords[0].score | 0.6667307615280151 |
| keywords[0].display_name | Irrigation scheduling |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6294692754745483 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/scheduling |
| keywords[2].score | 0.6249703764915466 |
| keywords[2].display_name | Scheduling (production processes) |
| keywords[3].id | https://openalex.org/keywords/model-predictive-control |
| keywords[3].score | 0.5794856548309326 |
| keywords[3].display_name | Model predictive control |
| keywords[4].id | https://openalex.org/keywords/scarcity |
| keywords[4].score | 0.4854510426521301 |
| keywords[4].display_name | Scarcity |
| keywords[5].id | https://openalex.org/keywords/irrigation |
| keywords[5].score | 0.44409245252609253 |
| keywords[5].display_name | Irrigation |
| keywords[6].id | https://openalex.org/keywords/agricultural-engineering |
| keywords[6].score | 0.43777328729629517 |
| keywords[6].display_name | Agricultural engineering |
| keywords[7].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[7].score | 0.375969797372818 |
| keywords[7].display_name | Mathematical optimization |
| keywords[8].id | https://openalex.org/keywords/control |
| keywords[8].score | 0.25590693950653076 |
| keywords[8].display_name | Control (management) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.2496301233768463 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.17460811138153076 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.13281819224357605 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1016/j.conengprac.2024.105908 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S105928092 |
| locations[0].source.issn | 0967-0661, 1873-6939 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0967-0661 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Control Engineering Practice |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Control Engineering Practice |
| locations[0].landing_page_url | https://doi.org/10.1016/j.conengprac.2024.105908 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5008723134 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7966-9721 |
| authorships[0].author.display_name | Bernard T. Agyeman |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I154425047 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Chemical & Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Alberta, AB, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I154425047 |
| authorships[0].institutions[0].ror | https://ror.org/0160cpw27 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I154425047 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | University of Alberta |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bernard T. Agyeman |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Chemical & Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Alberta, AB, Canada |
| authorships[1].author.id | https://openalex.org/A5016931481 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7325-8083 |
| authorships[1].author.display_name | Mohamed Naouri |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I928653953 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Applied Research, Innovation, and Entrepreneurship, Lethbridge College, Lethbridge, T1K 1L6., Alberta, AB, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I928653953 |
| authorships[1].institutions[0].ror | https://ror.org/05np0jp17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I928653953 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | Lethbridge College |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohamed Naouri |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Applied Research, Innovation, and Entrepreneurship, Lethbridge College, Lethbridge, T1K 1L6., Alberta, AB, Canada |
| authorships[2].author.id | https://openalex.org/A5078020232 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9140-1122 |
| authorships[2].author.display_name | Willemijn M. Appels |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I928653953 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Applied Research, Innovation, and Entrepreneurship, Lethbridge College, Lethbridge, T1K 1L6., Alberta, AB, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I928653953 |
| authorships[2].institutions[0].ror | https://ror.org/05np0jp17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I928653953 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | Lethbridge College |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Willemijn M. Appels |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Applied Research, Innovation, and Entrepreneurship, Lethbridge College, Lethbridge, T1K 1L6., Alberta, AB, Canada |
| authorships[3].author.id | https://openalex.org/A5100424760 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8873-847X |
| authorships[3].author.display_name | Jinfeng Liu |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I154425047 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Chemical & Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Alberta, AB, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I154425047 |
| authorships[3].institutions[0].ror | https://ror.org/0160cpw27 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I154425047 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | University of Alberta |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jinfeng Liu |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Chemical & Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Alberta, AB, Canada |
| authorships[4].author.id | https://openalex.org/A5043627103 |
| authorships[4].author.orcid | https://orcid.org/0009-0004-5072-7950 |
| authorships[4].author.display_name | Sirish L. Shah |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I154425047 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Chemical & Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Alberta, AB, Canada |
| authorships[4].institutions[0].id | https://openalex.org/I154425047 |
| authorships[4].institutions[0].ror | https://ror.org/0160cpw27 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I154425047 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | University of Alberta |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Sirish L. Shah |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Chemical & Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Alberta, AB, Canada |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.conengprac.2024.105908 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning-based multi-agent MPC for irrigation scheduling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11404 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9918000102043152 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1111 |
| primary_topic.subfield.display_name | Soil Science |
| primary_topic.display_name | Irrigation Practices and Water Management |
| related_works | https://openalex.org/W3137023317, https://openalex.org/W2344470585, https://openalex.org/W2370315413, https://openalex.org/W4230647136, https://openalex.org/W2907727737, https://openalex.org/W2324646006, https://openalex.org/W2890436230, https://openalex.org/W3127674161, https://openalex.org/W1964035568, https://openalex.org/W2465080911 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.conengprac.2024.105908 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S105928092 |
| best_oa_location.source.issn | 0967-0661, 1873-6939 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0967-0661 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Control Engineering Practice |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Control Engineering Practice |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.conengprac.2024.105908 |
| primary_location.id | doi:10.1016/j.conengprac.2024.105908 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S105928092 |
| primary_location.source.issn | 0967-0661, 1873-6939 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0967-0661 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Control Engineering Practice |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Control Engineering Practice |
| primary_location.landing_page_url | https://doi.org/10.1016/j.conengprac.2024.105908 |
| publication_date | 2024-03-12 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2896715775, https://openalex.org/W3162555379, https://openalex.org/W6858564447, https://openalex.org/W6843993423, https://openalex.org/W4309348867, https://openalex.org/W2077151867, https://openalex.org/W3021256567, https://openalex.org/W2792623193, https://openalex.org/W3195123205, https://openalex.org/W6650218747, https://openalex.org/W3135473476, https://openalex.org/W2764879626, https://openalex.org/W2218314461, https://openalex.org/W2102456122, https://openalex.org/W3023131821, https://openalex.org/W2103147027, https://openalex.org/W3010977907, https://openalex.org/W3098357169, https://openalex.org/W2539773631, https://openalex.org/W1448113274, https://openalex.org/W3089051791, https://openalex.org/W1965759322, https://openalex.org/W1984667267, https://openalex.org/W2256420211, https://openalex.org/W2085655078, https://openalex.org/W1968916607, https://openalex.org/W2918179498, https://openalex.org/W6843588726, https://openalex.org/W2580371084, https://openalex.org/W6681967612, https://openalex.org/W2887769610, https://openalex.org/W4365813991, https://openalex.org/W1985593343, https://openalex.org/W2011321861, https://openalex.org/W1981313577, https://openalex.org/W2558646635, https://openalex.org/W2982316857, https://openalex.org/W2123871098, https://openalex.org/W3043847312, https://openalex.org/W2112061270, https://openalex.org/W4303980931, https://openalex.org/W2335301285, https://openalex.org/W2130070413, https://openalex.org/W2574698072, https://openalex.org/W2963257680, https://openalex.org/W4396513263, https://openalex.org/W2965757358, https://openalex.org/W2888562230, https://openalex.org/W3151474584, https://openalex.org/W4367860562, https://openalex.org/W2528940545, https://openalex.org/W2736601468 |
| referenced_works_count | 52 |
| abstract_inverted_index.7 | 197 |
| abstract_inverted_index.a | 32, 56, 94, 124, 137, 152 |
| abstract_inverted_index.10 | 206 |
| abstract_inverted_index.To | 25 |
| abstract_inverted_index.as | 93 |
| abstract_inverted_index.in | 10, 155, 177 |
| abstract_inverted_index.of | 20, 136, 167, 179 |
| abstract_inverted_index.on | 151 |
| abstract_inverted_index.to | 105, 144, 198, 207 |
| abstract_inverted_index.MPC | 96, 126 |
| abstract_inverted_index.The | 52, 90 |
| abstract_inverted_index.Use | 182 |
| abstract_inverted_index.and | 13, 42, 65, 82, 115, 133, 160, 185 |
| abstract_inverted_index.are | 78, 142 |
| abstract_inverted_index.for | 69, 80, 157 |
| abstract_inverted_index.the | 5, 18, 101, 120, 134, 149, 158, 165, 168, 172, 190 |
| abstract_inverted_index.2015 | 159 |
| abstract_inverted_index.2022 | 161 |
| abstract_inverted_index.23%, | 199 |
| abstract_inverted_index.35%. | 208 |
| abstract_inverted_index.Amid | 0 |
| abstract_inverted_index.IWUE | 202 |
| abstract_inverted_index.LSTM | 103 |
| abstract_inverted_index.Long | 73 |
| abstract_inverted_index.also | 48 |
| abstract_inverted_index.crop | 15 |
| abstract_inverted_index.from | 205 |
| abstract_inverted_index.over | 171 |
| abstract_inverted_index.root | 85, 107 |
| abstract_inverted_index.soil | 87 |
| abstract_inverted_index.that | 38 |
| abstract_inverted_index.this | 29 |
| abstract_inverted_index.with | 97, 201 |
| abstract_inverted_index.zone | 59, 86, 98, 141 |
| abstract_inverted_index.Model | 43 |
| abstract_inverted_index.Water | 181 |
| abstract_inverted_index.about | 2 |
| abstract_inverted_index.faces | 8 |
| abstract_inverted_index.field | 154 |
| abstract_inverted_index.fixed | 116 |
| abstract_inverted_index.paper | 30 |
| abstract_inverted_index.terms | 178 |
| abstract_inverted_index.these | 27 |
| abstract_inverted_index.total | 186 |
| abstract_inverted_index.water | 11, 108, 113, 194 |
| abstract_inverted_index.where | 128 |
| abstract_inverted_index.while | 47, 110 |
| abstract_inverted_index.(IWUE) | 184 |
| abstract_inverted_index.(LSTM) | 76 |
| abstract_inverted_index.(MPC), | 46 |
| abstract_inverted_index.Memory | 75 |
| abstract_inverted_index.adopts | 123 |
| abstract_inverted_index.agents | 132 |
| abstract_inverted_index.costs. | 118 |
| abstract_inverted_index.hybrid | 130 |
| abstract_inverted_index.sector | 7 |
| abstract_inverted_index.uptake | 109 |
| abstract_inverted_index.Control | 45 |
| abstract_inverted_index.between | 196 |
| abstract_inverted_index.concept | 135 |
| abstract_inverted_index.coupled | 200 |
| abstract_inverted_index.enhance | 145 |
| abstract_inverted_index.growing | 162 |
| abstract_inverted_index.k-means | 63 |
| abstract_inverted_index.machine | 40 |
| abstract_inverted_index.overall | 112 |
| abstract_inverted_index.ranging | 204 |
| abstract_inverted_index.savings | 195 |
| abstract_inverted_index.seasons | 163 |
| abstract_inverted_index.yields, | 16 |
| abstract_inverted_index.Notably, | 189 |
| abstract_inverted_index.accurate | 81 |
| abstract_inverted_index.achieves | 193 |
| abstract_inverted_index.approach | 176, 192 |
| abstract_inverted_index.concerns | 1 |
| abstract_inverted_index.control, | 99 |
| abstract_inverted_index.employed | 79, 143 |
| abstract_inverted_index.learning | 41 |
| abstract_inverted_index.limiting | 138 |
| abstract_inverted_index.maximize | 106 |
| abstract_inverted_index.methods. | 24 |
| abstract_inverted_index.moisture | 88 |
| abstract_inverted_index.networks | 77, 104 |
| abstract_inverted_index.overcome | 26 |
| abstract_inverted_index.process, | 61 |
| abstract_inverted_index.proposed | 53, 169, 191 |
| abstract_inverted_index.unified, | 33 |
| abstract_inverted_index.utilizes | 100 |
| abstract_inverted_index.efficient | 84 |
| abstract_inverted_index.estimates | 68 |
| abstract_inverted_index.framework | 54 |
| abstract_inverted_index.hydraulic | 66 |
| abstract_inverted_index.increases | 203 |
| abstract_inverted_index.modeling. | 72, 89 |
| abstract_inverted_index.optimized | 70 |
| abstract_inverted_index.paradigm, | 127 |
| abstract_inverted_index.scarcity, | 4 |
| abstract_inverted_index.scheduler | 37, 122, 170 |
| abstract_inverted_index.triggered | 174 |
| abstract_inverted_index.utilizing | 62 |
| abstract_inverted_index.Efficiency | 183 |
| abstract_inverted_index.Evaluating | 148 |
| abstract_inverted_index.Irrigation | 180 |
| abstract_inverted_index.Lethbridge | 156 |
| abstract_inverted_index.Predictive | 44 |
| abstract_inverted_index.Short-Term | 74 |
| abstract_inverted_index.challenges | 9 |
| abstract_inverted_index.clustering | 64 |
| abstract_inverted_index.formulated | 92 |
| abstract_inverted_index.freshwater | 3 |
| abstract_inverted_index.identified | 102 |
| abstract_inverted_index.integrates | 39 |
| abstract_inverted_index.introduces | 31 |
| abstract_inverted_index.irrigation | 22, 36, 117, 139 |
| abstract_inverted_index.management | 58, 140 |
| abstract_inverted_index.minimizing | 111 |
| abstract_inverted_index.optimizing | 14 |
| abstract_inverted_index.parameters | 67 |
| abstract_inverted_index.predictive | 35 |
| abstract_inverted_index.prescribed | 187 |
| abstract_inverted_index.scheduler, | 91 |
| abstract_inverted_index.scheduling | 23, 175 |
| abstract_inverted_index.challenges, | 28 |
| abstract_inverted_index.consumption | 114 |
| abstract_inverted_index.delineation | 60 |
| abstract_inverted_index.efficiency. | 147 |
| abstract_inverted_index.irrigation. | 188 |
| abstract_inverted_index.limitations | 19 |
| abstract_inverted_index.multi-agent | 50, 125 |
| abstract_inverted_index.performance | 150 |
| abstract_inverted_index.principles. | 51 |
| abstract_inverted_index.superiority | 166 |
| abstract_inverted_index.three-stage | 57 |
| abstract_inverted_index.traditional | 21 |
| abstract_inverted_index.widely-used | 173 |
| abstract_inverted_index.26.4-hectare | 153 |
| abstract_inverted_index.agricultural | 6 |
| abstract_inverted_index.conservation | 12 |
| abstract_inverted_index.demonstrates | 164 |
| abstract_inverted_index.highlighting | 17 |
| abstract_inverted_index.incorporates | 55 |
| abstract_inverted_index.Additionally, | 119 |
| abstract_inverted_index.computational | 146 |
| abstract_inverted_index.decentralized | 129 |
| abstract_inverted_index.incorporating | 49 |
| abstract_inverted_index.mixed-integer | 95 |
| abstract_inverted_index.actor–critic | 131 |
| abstract_inverted_index.learning-based | 34, 121 |
| abstract_inverted_index.computationally | 83 |
| abstract_inverted_index.agro-hydrological | 71 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5100424760 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I154425047 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.96744114 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |