Learning Bayesian Network Parameters from Limited Data Integrating Entropy and Monotonicity Article Swipe
zhiping fan
,
Zhengyun Ren
,
Yinghao Tong
,
Angang Chen
,
Xue Feng
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.4420269
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.4420269
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.4420269
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366150689
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366150689Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.4420269Digital Object Identifier
- Title
-
Learning Bayesian Network Parameters from Limited Data Integrating Entropy and MonotonicityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
zhiping fan, Zhengyun Ren, Yinghao Tong, Angang Chen, Xue FengList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.4420269Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.4420269Direct OA link when available
- Concepts
-
Monotonic function, Bayesian network, Bayesian probability, Computer science, Principle of maximum entropy, Entropy (arrow of time), Econometrics, Artificial intelligence, Mathematics, Machine learning, Physics, Thermodynamics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366150689 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.4420269 |
| ids.doi | https://doi.org/10.2139/ssrn.4420269 |
| ids.openalex | https://openalex.org/W4366150689 |
| fwci | 0.51088578 |
| type | preprint |
| title | Learning Bayesian Network Parameters from Limited Data Integrating Entropy and Monotonicity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11303 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.945900022983551 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Modeling and Causal Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C72169020 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6525619029998779 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q194404 |
| concepts[0].display_name | Monotonic function |
| concepts[1].id | https://openalex.org/C33724603 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5922426581382751 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q812540 |
| concepts[1].display_name | Bayesian network |
| concepts[2].id | https://openalex.org/C107673813 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5408765077590942 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[2].display_name | Bayesian probability |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4867822825908661 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C9679016 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43469375371932983 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1417473 |
| concepts[4].display_name | Principle of maximum entropy |
| concepts[5].id | https://openalex.org/C106301342 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4162626266479492 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4117933 |
| concepts[5].display_name | Entropy (arrow of time) |
| concepts[6].id | https://openalex.org/C149782125 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40101394057273865 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[6].display_name | Econometrics |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.39392635226249695 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.32985493540763855 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32379281520843506 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.09382027387619019 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C97355855 |
| concepts[11].level | 1 |
| concepts[11].score | 0.06634533405303955 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[11].display_name | Thermodynamics |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/monotonic-function |
| keywords[0].score | 0.6525619029998779 |
| keywords[0].display_name | Monotonic function |
| keywords[1].id | https://openalex.org/keywords/bayesian-network |
| keywords[1].score | 0.5922426581382751 |
| keywords[1].display_name | Bayesian network |
| keywords[2].id | https://openalex.org/keywords/bayesian-probability |
| keywords[2].score | 0.5408765077590942 |
| keywords[2].display_name | Bayesian probability |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4867822825908661 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/principle-of-maximum-entropy |
| keywords[4].score | 0.43469375371932983 |
| keywords[4].display_name | Principle of maximum entropy |
| keywords[5].id | https://openalex.org/keywords/entropy |
| keywords[5].score | 0.4162626266479492 |
| keywords[5].display_name | Entropy (arrow of time) |
| keywords[6].id | https://openalex.org/keywords/econometrics |
| keywords[6].score | 0.40101394057273865 |
| keywords[6].display_name | Econometrics |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.39392635226249695 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.32985493540763855 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.32379281520843506 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.09382027387619019 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/thermodynamics |
| keywords[11].score | 0.06634533405303955 |
| keywords[11].display_name | Thermodynamics |
| language | en |
| locations[0].id | doi:10.2139/ssrn.4420269 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.4420269 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5059848467 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | zhiping fan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210135985 |
| authorships[0].affiliations[0].raw_affiliation_string | Shanghai University of Medicine and Health Sciences |
| authorships[0].institutions[0].id | https://openalex.org/I4210135985 |
| authorships[0].institutions[0].ror | https://ror.org/03ns6aq57 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210135985 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai University of Medicine and Health Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | zhiping fan |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Shanghai University of Medicine and Health Sciences |
| authorships[1].author.id | https://openalex.org/A5057649119 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6731-7382 |
| authorships[1].author.display_name | Zhengyun Ren |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I181326427 |
| authorships[1].affiliations[0].raw_affiliation_string | Donghua University |
| authorships[1].institutions[0].id | https://openalex.org/I181326427 |
| authorships[1].institutions[0].ror | https://ror.org/035psfh38 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I181326427 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Donghua University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhengyun Ren |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Donghua University |
| authorships[2].author.id | https://openalex.org/A5087721821 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yinghao Tong |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I181326427 |
| authorships[2].affiliations[0].raw_affiliation_string | Donghua University |
| authorships[2].institutions[0].id | https://openalex.org/I181326427 |
| authorships[2].institutions[0].ror | https://ror.org/035psfh38 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I181326427 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Donghua University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yinghao Tong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Donghua University |
| authorships[3].author.id | https://openalex.org/A5021278411 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8139-9284 |
| authorships[3].author.display_name | Angang Chen |
| authorships[3].affiliations[0].raw_affiliation_string | Guotai Junan Securities Co., Ltd. |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Angang Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Guotai Junan Securities Co., Ltd. |
| authorships[4].author.id | https://openalex.org/A5102759249 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2058-3592 |
| authorships[4].author.display_name | Xue Feng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I181326427 |
| authorships[4].affiliations[0].raw_affiliation_string | Donghua University |
| authorships[4].institutions[0].id | https://openalex.org/I181326427 |
| authorships[4].institutions[0].ror | https://ror.org/035psfh38 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I181326427 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Donghua University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xue Feng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Donghua University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.4420269 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Bayesian Network Parameters from Limited Data Integrating Entropy and Monotonicity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11303 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.945900022983551 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Modeling and Causal Inference |
| related_works | https://openalex.org/W4315701745, https://openalex.org/W1990290471, https://openalex.org/W4380682190, https://openalex.org/W2102386043, https://openalex.org/W2945307361, https://openalex.org/W2116636209, https://openalex.org/W2053698688, https://openalex.org/W3041490575, https://openalex.org/W2970690932, https://openalex.org/W4321135767 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.4420269 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.4420269 |
| primary_location.id | doi:10.2139/ssrn.4420269 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.4420269 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5059848467 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I4210135985 |
| citation_normalized_percentile.value | 0.65292556 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |