Learning by Neighbor-Aware Semantics, Deciding by Open-form Flows: Towards Robust Zero-Shot Skeleton Action Recognition Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.09388
Recognizing unseen skeleton action categories remains highly challenging due to the absence of corresponding skeletal priors. Existing approaches generally follow an "align-then-classify" paradigm but face two fundamental issues, i.e., (i) fragile point-to-point alignment arising from imperfect semantics, and (ii) rigid classifiers restricted by static decision boundaries and coarse-grained anchors. To address these issues, we propose a novel method for zero-shot skeleton action recognition, termed $\texttt{$\textbf{Flora}$}$, which builds upon $\textbf{F}$lexib$\textbf{L}$e neighb$\textbf{O}$r-aware semantic attunement and open-form dist$\textbf{R}$ibution-aware flow cl$\textbf{A}$ssifier. Specifically, we flexibly attune textual semantics by incorporating neighboring inter-class contextual cues to form direction-aware regional semantics, coupled with a cross-modal geometric consistency objective that ensures stable and robust point-to-region alignment. Furthermore, we employ noise-free flow matching to bridge the modality distribution gap between semantic and skeleton latent embeddings, while a condition-free contrastive regularization enhances discriminability, leading to a distribution-aware classifier with fine-grained decision boundaries achieved through token-level velocity predictions. Extensive experiments on three benchmark datasets validate the effectiveness of our method, showing particularly impressive performance even when trained with only 10\% of the seen data. Code is available at https://github.com/cseeyangchen/Flora.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.09388
- https://arxiv.org/pdf/2511.09388
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416223675
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416223675Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.09388Digital Object Identifier
- Title
-
Learning by Neighbor-Aware Semantics, Deciding by Open-form Flows: Towards Robust Zero-Shot Skeleton Action RecognitionWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-12Full publication date if available
- Authors
-
Miaoge Li, Deze Zeng, Song Guo, Jingcai GuoList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.09388Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.09388Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.09388Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416223675 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.09388 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.09388 |
| ids.openalex | https://openalex.org/W4416223675 |
| fwci | |
| type | preprint |
| title | Learning by Neighbor-Aware Semantics, Deciding by Open-form Flows: Towards Robust Zero-Shot Skeleton Action Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.09388 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.09388 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.09388 |
| locations[1].id | doi:10.48550/arxiv.2511.09388 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.09388 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5023992649 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-9531-3254 |
| authorships[0].author.display_name | Miaoge Li |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | Li, Miaoge |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009956605 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Deze Zeng |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Zeng, Deze |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5043464306 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9831-2202 |
| authorships[2].author.display_name | Song Guo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guo, Song |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5038505509 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0449-4525 |
| authorships[3].author.display_name | Jingcai Guo |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Guo, Jingcai |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.09388 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-14T00:00:00 |
| display_name | Learning by Neighbor-Aware Semantics, Deciding by Open-form Flows: Towards Robust Zero-Shot Skeleton Action Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T08:11:22.243570 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.09388 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.09388 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.09388 |
| primary_location.id | pmh:oai:arXiv.org:2511.09388 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.09388 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.09388 |
| publication_date | 2025-11-12 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 55, 96, 127, 135 |
| abstract_inverted_index.To | 49 |
| abstract_inverted_index.an | 20 |
| abstract_inverted_index.at | 176 |
| abstract_inverted_index.by | 42, 83 |
| abstract_inverted_index.is | 174 |
| abstract_inverted_index.of | 12, 156, 169 |
| abstract_inverted_index.on | 149 |
| abstract_inverted_index.to | 9, 89, 114, 134 |
| abstract_inverted_index.we | 53, 78, 109 |
| abstract_inverted_index.(i) | 29 |
| abstract_inverted_index.and | 37, 46, 72, 104, 122 |
| abstract_inverted_index.but | 23 |
| abstract_inverted_index.due | 8 |
| abstract_inverted_index.for | 58 |
| abstract_inverted_index.gap | 119 |
| abstract_inverted_index.our | 157 |
| abstract_inverted_index.the | 10, 116, 154, 170 |
| abstract_inverted_index.two | 25 |
| abstract_inverted_index.(ii) | 38 |
| abstract_inverted_index.10\% | 168 |
| abstract_inverted_index.Code | 173 |
| abstract_inverted_index.cues | 88 |
| abstract_inverted_index.even | 163 |
| abstract_inverted_index.face | 24 |
| abstract_inverted_index.flow | 75, 112 |
| abstract_inverted_index.form | 90 |
| abstract_inverted_index.from | 34 |
| abstract_inverted_index.only | 167 |
| abstract_inverted_index.seen | 171 |
| abstract_inverted_index.that | 101 |
| abstract_inverted_index.upon | 67 |
| abstract_inverted_index.when | 164 |
| abstract_inverted_index.with | 95, 138, 166 |
| abstract_inverted_index.data. | 172 |
| abstract_inverted_index.i.e., | 28 |
| abstract_inverted_index.novel | 56 |
| abstract_inverted_index.rigid | 39 |
| abstract_inverted_index.these | 51 |
| abstract_inverted_index.three | 150 |
| abstract_inverted_index.which | 65 |
| abstract_inverted_index.while | 126 |
| abstract_inverted_index.action | 3, 61 |
| abstract_inverted_index.attune | 80 |
| abstract_inverted_index.bridge | 115 |
| abstract_inverted_index.builds | 66 |
| abstract_inverted_index.employ | 110 |
| abstract_inverted_index.follow | 19 |
| abstract_inverted_index.highly | 6 |
| abstract_inverted_index.latent | 124 |
| abstract_inverted_index.method | 57 |
| abstract_inverted_index.robust | 105 |
| abstract_inverted_index.stable | 103 |
| abstract_inverted_index.static | 43 |
| abstract_inverted_index.termed | 63 |
| abstract_inverted_index.unseen | 1 |
| abstract_inverted_index.absence | 11 |
| abstract_inverted_index.address | 50 |
| abstract_inverted_index.arising | 33 |
| abstract_inverted_index.between | 120 |
| abstract_inverted_index.coupled | 94 |
| abstract_inverted_index.ensures | 102 |
| abstract_inverted_index.fragile | 30 |
| abstract_inverted_index.issues, | 27, 52 |
| abstract_inverted_index.leading | 133 |
| abstract_inverted_index.method, | 158 |
| abstract_inverted_index.priors. | 15 |
| abstract_inverted_index.propose | 54 |
| abstract_inverted_index.remains | 5 |
| abstract_inverted_index.showing | 159 |
| abstract_inverted_index.textual | 81 |
| abstract_inverted_index.through | 143 |
| abstract_inverted_index.trained | 165 |
| abstract_inverted_index.Existing | 16 |
| abstract_inverted_index.achieved | 142 |
| abstract_inverted_index.anchors. | 48 |
| abstract_inverted_index.datasets | 152 |
| abstract_inverted_index.decision | 44, 140 |
| abstract_inverted_index.enhances | 131 |
| abstract_inverted_index.flexibly | 79 |
| abstract_inverted_index.matching | 113 |
| abstract_inverted_index.modality | 117 |
| abstract_inverted_index.paradigm | 22 |
| abstract_inverted_index.regional | 92 |
| abstract_inverted_index.semantic | 70, 121 |
| abstract_inverted_index.skeletal | 14 |
| abstract_inverted_index.skeleton | 2, 60, 123 |
| abstract_inverted_index.validate | 153 |
| abstract_inverted_index.velocity | 145 |
| abstract_inverted_index.Extensive | 147 |
| abstract_inverted_index.alignment | 32 |
| abstract_inverted_index.available | 175 |
| abstract_inverted_index.benchmark | 151 |
| abstract_inverted_index.generally | 18 |
| abstract_inverted_index.geometric | 98 |
| abstract_inverted_index.imperfect | 35 |
| abstract_inverted_index.objective | 100 |
| abstract_inverted_index.open-form | 73 |
| abstract_inverted_index.semantics | 82 |
| abstract_inverted_index.zero-shot | 59 |
| abstract_inverted_index.alignment. | 107 |
| abstract_inverted_index.approaches | 17 |
| abstract_inverted_index.attunement | 71 |
| abstract_inverted_index.boundaries | 45, 141 |
| abstract_inverted_index.categories | 4 |
| abstract_inverted_index.classifier | 137 |
| abstract_inverted_index.contextual | 87 |
| abstract_inverted_index.impressive | 161 |
| abstract_inverted_index.noise-free | 111 |
| abstract_inverted_index.restricted | 41 |
| abstract_inverted_index.semantics, | 36, 93 |
| abstract_inverted_index.Recognizing | 0 |
| abstract_inverted_index.challenging | 7 |
| abstract_inverted_index.classifiers | 40 |
| abstract_inverted_index.consistency | 99 |
| abstract_inverted_index.contrastive | 129 |
| abstract_inverted_index.cross-modal | 97 |
| abstract_inverted_index.embeddings, | 125 |
| abstract_inverted_index.experiments | 148 |
| abstract_inverted_index.fundamental | 26 |
| abstract_inverted_index.inter-class | 86 |
| abstract_inverted_index.neighboring | 85 |
| abstract_inverted_index.performance | 162 |
| abstract_inverted_index.token-level | 144 |
| abstract_inverted_index.Furthermore, | 108 |
| abstract_inverted_index.distribution | 118 |
| abstract_inverted_index.fine-grained | 139 |
| abstract_inverted_index.particularly | 160 |
| abstract_inverted_index.predictions. | 146 |
| abstract_inverted_index.recognition, | 62 |
| abstract_inverted_index.Specifically, | 77 |
| abstract_inverted_index.corresponding | 13 |
| abstract_inverted_index.effectiveness | 155 |
| abstract_inverted_index.incorporating | 84 |
| abstract_inverted_index.coarse-grained | 47 |
| abstract_inverted_index.condition-free | 128 |
| abstract_inverted_index.point-to-point | 31 |
| abstract_inverted_index.regularization | 130 |
| abstract_inverted_index.direction-aware | 91 |
| abstract_inverted_index.point-to-region | 106 |
| abstract_inverted_index.discriminability, | 132 |
| abstract_inverted_index.distribution-aware | 136 |
| abstract_inverted_index."align-then-classify" | 21 |
| abstract_inverted_index.cl$\textbf{A}$ssifier. | 76 |
| abstract_inverted_index.neighb$\textbf{O}$r-aware | 69 |
| abstract_inverted_index.$\texttt{$\textbf{Flora}$}$, | 64 |
| abstract_inverted_index.dist$\textbf{R}$ibution-aware | 74 |
| abstract_inverted_index.$\textbf{F}$lexib$\textbf{L}$e | 68 |
| abstract_inverted_index.https://github.com/cseeyangchen/Flora. | 177 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |