Learning Constraints from Locally-Optimal Demonstrations under Cost Function Uncertainty Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2001.09336
We present an algorithm for learning parametric constraints from locally-optimal demonstrations, where the cost function being optimized is uncertain to the learner. Our method uses the Karush-Kuhn-Tucker (KKT) optimality conditions of the demonstrations within a mixed integer linear program (MILP) to learn constraints which are consistent with the local optimality of the demonstrations, by either using a known constraint parameterization or by incrementally growing a parameterization that is consistent with the demonstrations. We provide theoretical guarantees on the conservativeness of the recovered safe/unsafe sets and analyze the limits of constraint learnability when using locally-optimal demonstrations. We evaluate our method on high-dimensional constraints and systems by learning constraints for 7-DOF arm and quadrotor examples, show that it outperforms competing constraint-learning approaches, and can be effectively used to plan new constraint-satisfying trajectories in the environment.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2001.09336
- https://arxiv.org/pdf/2001.09336
- OA Status
- green
- Cited By
- 2
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3001217416
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3001217416Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2001.09336Digital Object Identifier
- Title
-
Learning Constraints from Locally-Optimal Demonstrations under Cost Function UncertaintyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-25Full publication date if available
- Authors
-
Glen Chou, Necmiye Özay, Dmitry BerensonList of authors in order
- Landing page
-
https://arxiv.org/abs/2001.09336Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2001.09336Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2001.09336Direct OA link when available
- Concepts
-
Karush–Kuhn–Tucker conditions, Mathematical optimization, Constraint (computer-aided design), Learnability, Function (biology), Computer science, Integer (computer science), Constraint learning, Parametric statistics, Mathematics, Constraint programming, Artificial intelligence, Constraint logic programming, Stochastic programming, Biology, Programming language, Statistics, Geometry, Evolutionary biologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3001217416 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2001.09336 |
| ids.doi | https://doi.org/10.48550/arxiv.2001.09336 |
| ids.mag | 3001217416 |
| ids.openalex | https://openalex.org/W3001217416 |
| fwci | |
| type | preprint |
| title | Learning Constraints from Locally-Optimal Demonstrations under Cost Function Uncertainty |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12072 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9951000213623047 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Algorithms |
| topics[1].id | https://openalex.org/T10906 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9945999979972839 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI-based Problem Solving and Planning |
| topics[2].id | https://openalex.org/T10653 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9739999771118164 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Robot Manipulation and Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50454189 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7970420122146606 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2075125 |
| concepts[0].display_name | Karush–Kuhn–Tucker conditions |
| concepts[1].id | https://openalex.org/C126255220 |
| concepts[1].level | 1 |
| concepts[1].score | 0.746315062046051 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[1].display_name | Mathematical optimization |
| concepts[2].id | https://openalex.org/C2776036281 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7056311368942261 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q48769818 |
| concepts[2].display_name | Constraint (computer-aided design) |
| concepts[3].id | https://openalex.org/C2777723229 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6958795785903931 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4367921 |
| concepts[3].display_name | Learnability |
| concepts[4].id | https://openalex.org/C14036430 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5659079551696777 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[4].display_name | Function (biology) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5516173839569092 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C97137487 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4800775647163391 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q729138 |
| concepts[6].display_name | Integer (computer science) |
| concepts[7].id | https://openalex.org/C29230964 |
| concepts[7].level | 5 |
| concepts[7].score | 0.476521372795105 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5164376 |
| concepts[7].display_name | Constraint learning |
| concepts[8].id | https://openalex.org/C117251300 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4510747790336609 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[8].display_name | Parametric statistics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.31014156341552734 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C173404611 |
| concepts[10].level | 3 |
| concepts[10].score | 0.2837389409542084 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q528588 |
| concepts[10].display_name | Constraint programming |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2257971465587616 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C176783269 |
| concepts[12].level | 4 |
| concepts[12].score | 0.17115017771720886 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5164378 |
| concepts[12].display_name | Constraint logic programming |
| concepts[13].id | https://openalex.org/C137631369 |
| concepts[13].level | 2 |
| concepts[13].score | 0.05449596047401428 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7617831 |
| concepts[13].display_name | Stochastic programming |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C78458016 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[18].display_name | Evolutionary biology |
| keywords[0].id | https://openalex.org/keywords/karush–kuhn–tucker-conditions |
| keywords[0].score | 0.7970420122146606 |
| keywords[0].display_name | Karush–Kuhn–Tucker conditions |
| keywords[1].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[1].score | 0.746315062046051 |
| keywords[1].display_name | Mathematical optimization |
| keywords[2].id | https://openalex.org/keywords/constraint |
| keywords[2].score | 0.7056311368942261 |
| keywords[2].display_name | Constraint (computer-aided design) |
| keywords[3].id | https://openalex.org/keywords/learnability |
| keywords[3].score | 0.6958795785903931 |
| keywords[3].display_name | Learnability |
| keywords[4].id | https://openalex.org/keywords/function |
| keywords[4].score | 0.5659079551696777 |
| keywords[4].display_name | Function (biology) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5516173839569092 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/integer |
| keywords[6].score | 0.4800775647163391 |
| keywords[6].display_name | Integer (computer science) |
| keywords[7].id | https://openalex.org/keywords/constraint-learning |
| keywords[7].score | 0.476521372795105 |
| keywords[7].display_name | Constraint learning |
| keywords[8].id | https://openalex.org/keywords/parametric-statistics |
| keywords[8].score | 0.4510747790336609 |
| keywords[8].display_name | Parametric statistics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.31014156341552734 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/constraint-programming |
| keywords[10].score | 0.2837389409542084 |
| keywords[10].display_name | Constraint programming |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.2257971465587616 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/constraint-logic-programming |
| keywords[12].score | 0.17115017771720886 |
| keywords[12].display_name | Constraint logic programming |
| keywords[13].id | https://openalex.org/keywords/stochastic-programming |
| keywords[13].score | 0.05449596047401428 |
| keywords[13].display_name | Stochastic programming |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2001.09336 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2001.09336 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2001.09336 |
| locations[1].id | doi:10.48550/arxiv.2001.09336 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2001.09336 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5006149535 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4444-3631 |
| authorships[0].author.display_name | Glen Chou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Glen Chou |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054418471 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5552-4392 |
| authorships[1].author.display_name | Necmiye Özay |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Necmiye Ozay |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083082888 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9712-109X |
| authorships[2].author.display_name | Dmitry Berenson |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Dmitry Berenson |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2001.09336 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-01-30T00:00:00 |
| display_name | Learning Constraints from Locally-Optimal Demonstrations under Cost Function Uncertainty |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12072 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9951000213623047 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Algorithms |
| related_works | https://openalex.org/W4385764505, https://openalex.org/W3003470753, https://openalex.org/W2381224930, https://openalex.org/W2121633746, https://openalex.org/W2729734553, https://openalex.org/W2611943309, https://openalex.org/W2022053804, https://openalex.org/W2044707813, https://openalex.org/W2042246031, https://openalex.org/W2296605212 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2001.09336 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2001.09336 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2001.09336 |
| primary_location.id | pmh:oai:arXiv.org:2001.09336 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2001.09336 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2001.09336 |
| publication_date | 2020-01-25 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2842089854, https://openalex.org/W2736457169, https://openalex.org/W2158607953, https://openalex.org/W2107308405, https://openalex.org/W3032881759, https://openalex.org/W2296319761, https://openalex.org/W2515082088, https://openalex.org/W1999874108, https://openalex.org/W2738190501, https://openalex.org/W2998710335, https://openalex.org/W2116341587, https://openalex.org/W1986014385, https://openalex.org/W2169498096, https://openalex.org/W2597829367, https://openalex.org/W2737702598, https://openalex.org/W2027161089, https://openalex.org/W2019965290, https://openalex.org/W2061562262, https://openalex.org/W3023096123, https://openalex.org/W2103254706, https://openalex.org/W2963762522, https://openalex.org/W2571352963, https://openalex.org/W2137254586 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 34, 56, 64 |
| abstract_inverted_index.We | 0, 72, 95 |
| abstract_inverted_index.an | 2 |
| abstract_inverted_index.be | 122 |
| abstract_inverted_index.by | 53, 61, 104 |
| abstract_inverted_index.in | 130 |
| abstract_inverted_index.is | 17, 67 |
| abstract_inverted_index.it | 115 |
| abstract_inverted_index.of | 30, 50, 79, 88 |
| abstract_inverted_index.on | 76, 99 |
| abstract_inverted_index.or | 60 |
| abstract_inverted_index.to | 19, 40, 125 |
| abstract_inverted_index.Our | 22 |
| abstract_inverted_index.and | 84, 102, 110, 120 |
| abstract_inverted_index.are | 44 |
| abstract_inverted_index.arm | 109 |
| abstract_inverted_index.can | 121 |
| abstract_inverted_index.for | 4, 107 |
| abstract_inverted_index.new | 127 |
| abstract_inverted_index.our | 97 |
| abstract_inverted_index.the | 12, 20, 25, 31, 47, 51, 70, 77, 80, 86, 131 |
| abstract_inverted_index.cost | 13 |
| abstract_inverted_index.from | 8 |
| abstract_inverted_index.plan | 126 |
| abstract_inverted_index.sets | 83 |
| abstract_inverted_index.show | 113 |
| abstract_inverted_index.that | 66, 114 |
| abstract_inverted_index.used | 124 |
| abstract_inverted_index.uses | 24 |
| abstract_inverted_index.when | 91 |
| abstract_inverted_index.with | 46, 69 |
| abstract_inverted_index.(KKT) | 27 |
| abstract_inverted_index.7-DOF | 108 |
| abstract_inverted_index.being | 15 |
| abstract_inverted_index.known | 57 |
| abstract_inverted_index.learn | 41 |
| abstract_inverted_index.local | 48 |
| abstract_inverted_index.mixed | 35 |
| abstract_inverted_index.using | 55, 92 |
| abstract_inverted_index.where | 11 |
| abstract_inverted_index.which | 43 |
| abstract_inverted_index.(MILP) | 39 |
| abstract_inverted_index.either | 54 |
| abstract_inverted_index.limits | 87 |
| abstract_inverted_index.linear | 37 |
| abstract_inverted_index.method | 23, 98 |
| abstract_inverted_index.within | 33 |
| abstract_inverted_index.analyze | 85 |
| abstract_inverted_index.growing | 63 |
| abstract_inverted_index.integer | 36 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.program | 38 |
| abstract_inverted_index.provide | 73 |
| abstract_inverted_index.systems | 103 |
| abstract_inverted_index.evaluate | 96 |
| abstract_inverted_index.function | 14 |
| abstract_inverted_index.learner. | 21 |
| abstract_inverted_index.learning | 5, 105 |
| abstract_inverted_index.algorithm | 3 |
| abstract_inverted_index.competing | 117 |
| abstract_inverted_index.examples, | 112 |
| abstract_inverted_index.optimized | 16 |
| abstract_inverted_index.quadrotor | 111 |
| abstract_inverted_index.recovered | 81 |
| abstract_inverted_index.uncertain | 18 |
| abstract_inverted_index.conditions | 29 |
| abstract_inverted_index.consistent | 45, 68 |
| abstract_inverted_index.constraint | 58, 89 |
| abstract_inverted_index.guarantees | 75 |
| abstract_inverted_index.optimality | 28, 49 |
| abstract_inverted_index.parametric | 6 |
| abstract_inverted_index.approaches, | 119 |
| abstract_inverted_index.constraints | 7, 42, 101, 106 |
| abstract_inverted_index.effectively | 123 |
| abstract_inverted_index.outperforms | 116 |
| abstract_inverted_index.safe/unsafe | 82 |
| abstract_inverted_index.theoretical | 74 |
| abstract_inverted_index.environment. | 132 |
| abstract_inverted_index.learnability | 90 |
| abstract_inverted_index.trajectories | 129 |
| abstract_inverted_index.incrementally | 62 |
| abstract_inverted_index.demonstrations | 32 |
| abstract_inverted_index.demonstrations, | 10, 52 |
| abstract_inverted_index.demonstrations. | 71, 94 |
| abstract_inverted_index.locally-optimal | 9, 93 |
| abstract_inverted_index.conservativeness | 78 |
| abstract_inverted_index.high-dimensional | 100 |
| abstract_inverted_index.parameterization | 59, 65 |
| abstract_inverted_index.Karush-Kuhn-Tucker | 26 |
| abstract_inverted_index.constraint-learning | 118 |
| abstract_inverted_index.constraint-satisfying | 128 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |