Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-Domain Translation Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v35i12.17249
This paper studies the unsupervised cross-domain translation problem by proposing a generative framework, in which the probability distribution of each domain is represented by a generative cooperative network that consists of an energy-based model and a latent variable model. The use of generative cooperative network enables maximum likelihood learning of the domain model by MCMC teaching, where the energy-based model seeks to fit the data distribution of domain and distills its knowledge to the latent variable model via MCMC. Specifically, in the MCMC teaching process, the latent variable model parameterized by an encoder-decoder maps examples from the source domain to the target domain, while the energy-based model further refines the mapped results by Langevin revision such that the revised results match to the examples in the target domain in terms of the statistical properties, which are defined by the learned energy function. For the purpose of building up a correspondence between two unpaired domains, the proposed framework simultaneously learns a pair of cooperative networks with cycle consistency, accounting for a two-way translation between two domains, by alternating MCMC teaching. Experiments show that the proposed framework is useful for unsupervised image-to-image translation and unpaired image sequence translation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v35i12.17249
- https://ojs.aaai.org/index.php/AAAI/article/download/17249/17056
- OA Status
- diamond
- Cited By
- 9
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3174370604
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3174370604Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v35i12.17249Digital Object Identifier
- Title
-
Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-Domain TranslationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-18Full publication date if available
- Authors
-
Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song‐Chun Zhu, Ying WuList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v35i12.17249Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/17249/17056Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/17249/17056Direct OA link when available
- Concepts
-
Latent variable, Computer science, Artificial intelligence, Domain (mathematical analysis), Translation (biology), Markov chain Monte Carlo, Generative model, Image translation, Unsupervised learning, Image (mathematics), Pattern recognition (psychology), Generative grammar, Machine learning, Mathematics, Bayesian probability, Messenger RNA, Gene, Chemistry, Biochemistry, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3, 2022: 1, 2021: 4, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3174370604 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v35i12.17249 |
| ids.doi | https://doi.org/10.1609/aaai.v35i12.17249 |
| ids.mag | 3174370604 |
| ids.openalex | https://openalex.org/W3174370604 |
| fwci | 0.50676129 |
| type | article |
| title | Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-Domain Translation |
| biblio.issue | 12 |
| biblio.volume | 35 |
| biblio.last_page | 10440 |
| biblio.first_page | 10430 |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9857000112533569 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9725000262260437 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9244999885559082 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C51167844 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6784902811050415 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4422623 |
| concepts[0].display_name | Latent variable |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6409310698509216 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6144692301750183 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C36503486 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6096904873847961 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[3].display_name | Domain (mathematical analysis) |
| concepts[4].id | https://openalex.org/C149364088 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5807405710220337 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q185917 |
| concepts[4].display_name | Translation (biology) |
| concepts[5].id | https://openalex.org/C111350023 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5552534461021423 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[5].display_name | Markov chain Monte Carlo |
| concepts[6].id | https://openalex.org/C167966045 |
| concepts[6].level | 3 |
| concepts[6].score | 0.49402934312820435 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[6].display_name | Generative model |
| concepts[7].id | https://openalex.org/C2779757391 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4565446376800537 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6002292 |
| concepts[7].display_name | Image translation |
| concepts[8].id | https://openalex.org/C8038995 |
| concepts[8].level | 2 |
| concepts[8].score | 0.447888046503067 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[8].display_name | Unsupervised learning |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.38815659284591675 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3765676021575928 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C39890363 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3382079601287842 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[11].display_name | Generative grammar |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3295370936393738 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.20992910861968994 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C107673813 |
| concepts[14].level | 2 |
| concepts[14].score | 0.1241987943649292 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[14].display_name | Bayesian probability |
| concepts[15].id | https://openalex.org/C105580179 |
| concepts[15].level | 3 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q188928 |
| concepts[15].display_name | Messenger RNA |
| concepts[16].id | https://openalex.org/C104317684 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[16].display_name | Gene |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| concepts[18].id | https://openalex.org/C55493867 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[18].display_name | Biochemistry |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/latent-variable |
| keywords[0].score | 0.6784902811050415 |
| keywords[0].display_name | Latent variable |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6409310698509216 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6144692301750183 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/domain |
| keywords[3].score | 0.6096904873847961 |
| keywords[3].display_name | Domain (mathematical analysis) |
| keywords[4].id | https://openalex.org/keywords/translation |
| keywords[4].score | 0.5807405710220337 |
| keywords[4].display_name | Translation (biology) |
| keywords[5].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[5].score | 0.5552534461021423 |
| keywords[5].display_name | Markov chain Monte Carlo |
| keywords[6].id | https://openalex.org/keywords/generative-model |
| keywords[6].score | 0.49402934312820435 |
| keywords[6].display_name | Generative model |
| keywords[7].id | https://openalex.org/keywords/image-translation |
| keywords[7].score | 0.4565446376800537 |
| keywords[7].display_name | Image translation |
| keywords[8].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[8].score | 0.447888046503067 |
| keywords[8].display_name | Unsupervised learning |
| keywords[9].id | https://openalex.org/keywords/image |
| keywords[9].score | 0.38815659284591675 |
| keywords[9].display_name | Image (mathematics) |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3765676021575928 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/generative-grammar |
| keywords[11].score | 0.3382079601287842 |
| keywords[11].display_name | Generative grammar |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.3295370936393738 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.20992910861968994 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/bayesian-probability |
| keywords[14].score | 0.1241987943649292 |
| keywords[14].display_name | Bayesian probability |
| language | en |
| locations[0].id | doi:10.1609/aaai.v35i12.17249 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/17249/17056 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v35i12.17249 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102966958 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6818-7444 |
| authorships[0].author.display_name | Jianwen Xie |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I98301712 |
| authorships[0].affiliations[0].raw_affiliation_string | Baidu Research |
| authorships[0].institutions[0].id | https://openalex.org/I98301712 |
| authorships[0].institutions[0].ror | https://ror.org/03vs3wt56 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I98301712 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Baidu (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jianwen Xie |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Baidu Research |
| authorships[1].author.id | https://openalex.org/A5056521090 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1219-5151 |
| authorships[1].author.display_name | Zilong Zheng |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[1].affiliations[0].raw_affiliation_string | University of California, Los Angeles |
| authorships[1].institutions[0].id | https://openalex.org/I161318765 |
| authorships[1].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Los Angeles |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zilong Zheng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of California, Los Angeles |
| authorships[2].author.id | https://openalex.org/A5112049375 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xiaolin Fang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[2].affiliations[0].raw_affiliation_string | Massachusetts Institute of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I63966007 |
| authorships[2].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaolin Fang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Massachusetts Institute of Technology |
| authorships[3].author.id | https://openalex.org/A5034228010 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Song‐Chun Zhu |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[3].affiliations[0].raw_affiliation_string | University of California, Los Angeles Tsinghua University Peking University |
| authorships[3].institutions[0].id | https://openalex.org/I161318765 |
| authorships[3].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, Los Angeles |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Song-Chun Zhu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of California, Los Angeles Tsinghua University Peking University |
| authorships[4].author.id | https://openalex.org/A5101780958 |
| authorships[4].author.orcid | https://orcid.org/0009-0001-6768-5118 |
| authorships[4].author.display_name | Ying Wu |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[4].affiliations[0].raw_affiliation_string | University of California, Los Angeles |
| authorships[4].institutions[0].id | https://openalex.org/I161318765 |
| authorships[4].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of California, Los Angeles |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ying Nian Wu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of California, Los Angeles |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/17249/17056 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-Domain Translation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9857000112533569 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W2616125534, https://openalex.org/W2770703741, https://openalex.org/W2963987720, https://openalex.org/W3022187094, https://openalex.org/W4295680417, https://openalex.org/W2963790827, https://openalex.org/W3190687883, https://openalex.org/W2786010873, https://openalex.org/W2146310005, https://openalex.org/W4311117049 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v35i12.17249 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/17249/17056 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v35i12.17249 |
| primary_location.id | doi:10.1609/aaai.v35i12.17249 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/17249/17056 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v35i12.17249 |
| publication_date | 2021-05-18 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2739748921, https://openalex.org/W2785838823, https://openalex.org/W6753861791, https://openalex.org/W2893749619, https://openalex.org/W2559085405, https://openalex.org/W6676297131, https://openalex.org/W2970607325, https://openalex.org/W2796731119, https://openalex.org/W6640174519, https://openalex.org/W2475287302, https://openalex.org/W2946914555, https://openalex.org/W6727000295, https://openalex.org/W2963981733, https://openalex.org/W2797650215, https://openalex.org/W2331128040, https://openalex.org/W6631190155, https://openalex.org/W6640963894, https://openalex.org/W6734074887, https://openalex.org/W6736014680, https://openalex.org/W6638674303, https://openalex.org/W2938608316, https://openalex.org/W2945043396, https://openalex.org/W2173520492, https://openalex.org/W1686810756, https://openalex.org/W2183341477, https://openalex.org/W189587150, https://openalex.org/W2295130376, https://openalex.org/W2788289427, https://openalex.org/W2524047397, https://openalex.org/W6694077575, https://openalex.org/W2795542784, https://openalex.org/W3115235224, https://openalex.org/W2621006664, https://openalex.org/W2967593122, https://openalex.org/W2903725113, https://openalex.org/W2605287558, https://openalex.org/W4301206121, https://openalex.org/W2962793481, https://openalex.org/W2272361785, https://openalex.org/W2604721644, https://openalex.org/W2963890275, https://openalex.org/W2963917969, https://openalex.org/W2998689703, https://openalex.org/W3116874393, https://openalex.org/W4320013936, https://openalex.org/W4239072543, https://openalex.org/W4297749385, https://openalex.org/W4288795044, https://openalex.org/W2954040150, https://openalex.org/W2963684088, https://openalex.org/W3146928245, https://openalex.org/W2963140844, https://openalex.org/W2962947361, https://openalex.org/W2964335397, https://openalex.org/W1522301498, https://openalex.org/W1959608418, https://openalex.org/W2519766107, https://openalex.org/W2998462233, https://openalex.org/W2952716587, https://openalex.org/W3014652669, https://openalex.org/W2951523806, https://openalex.org/W2963920537 |
| referenced_works_count | 62 |
| abstract_inverted_index.a | 10, 24, 35, 148, 159, 169 |
| abstract_inverted_index.an | 31, 91 |
| abstract_inverted_index.by | 8, 23, 53, 90, 112, 137, 175 |
| abstract_inverted_index.in | 13, 80, 124, 128 |
| abstract_inverted_index.is | 21, 185 |
| abstract_inverted_index.of | 18, 30, 41, 49, 66, 130, 145, 161 |
| abstract_inverted_index.to | 61, 72, 99, 121 |
| abstract_inverted_index.up | 147 |
| abstract_inverted_index.For | 142 |
| abstract_inverted_index.The | 39 |
| abstract_inverted_index.and | 34, 68, 191 |
| abstract_inverted_index.are | 135 |
| abstract_inverted_index.fit | 62 |
| abstract_inverted_index.for | 168, 187 |
| abstract_inverted_index.its | 70 |
| abstract_inverted_index.the | 3, 15, 50, 57, 63, 73, 81, 85, 96, 100, 104, 109, 117, 122, 125, 131, 138, 143, 154, 182 |
| abstract_inverted_index.two | 151, 173 |
| abstract_inverted_index.use | 40 |
| abstract_inverted_index.via | 77 |
| abstract_inverted_index.MCMC | 54, 82, 177 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.data | 64 |
| abstract_inverted_index.each | 19 |
| abstract_inverted_index.from | 95 |
| abstract_inverted_index.maps | 93 |
| abstract_inverted_index.pair | 160 |
| abstract_inverted_index.show | 180 |
| abstract_inverted_index.such | 115 |
| abstract_inverted_index.that | 28, 116, 181 |
| abstract_inverted_index.with | 164 |
| abstract_inverted_index.MCMC. | 78 |
| abstract_inverted_index.cycle | 165 |
| abstract_inverted_index.image | 193 |
| abstract_inverted_index.match | 120 |
| abstract_inverted_index.model | 33, 52, 59, 76, 88, 106 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.seeks | 60 |
| abstract_inverted_index.terms | 129 |
| abstract_inverted_index.where | 56 |
| abstract_inverted_index.which | 14, 134 |
| abstract_inverted_index.while | 103 |
| abstract_inverted_index.domain | 20, 51, 67, 98, 127 |
| abstract_inverted_index.energy | 140 |
| abstract_inverted_index.latent | 36, 74, 86 |
| abstract_inverted_index.learns | 158 |
| abstract_inverted_index.mapped | 110 |
| abstract_inverted_index.model. | 38 |
| abstract_inverted_index.source | 97 |
| abstract_inverted_index.target | 101, 126 |
| abstract_inverted_index.useful | 186 |
| abstract_inverted_index.between | 150, 172 |
| abstract_inverted_index.defined | 136 |
| abstract_inverted_index.domain, | 102 |
| abstract_inverted_index.enables | 45 |
| abstract_inverted_index.further | 107 |
| abstract_inverted_index.learned | 139 |
| abstract_inverted_index.maximum | 46 |
| abstract_inverted_index.network | 27, 44 |
| abstract_inverted_index.problem | 7 |
| abstract_inverted_index.purpose | 144 |
| abstract_inverted_index.refines | 108 |
| abstract_inverted_index.results | 111, 119 |
| abstract_inverted_index.revised | 118 |
| abstract_inverted_index.studies | 2 |
| abstract_inverted_index.two-way | 170 |
| abstract_inverted_index.Langevin | 113 |
| abstract_inverted_index.building | 146 |
| abstract_inverted_index.consists | 29 |
| abstract_inverted_index.distills | 69 |
| abstract_inverted_index.domains, | 153, 174 |
| abstract_inverted_index.examples | 94, 123 |
| abstract_inverted_index.learning | 48 |
| abstract_inverted_index.networks | 163 |
| abstract_inverted_index.process, | 84 |
| abstract_inverted_index.proposed | 155, 183 |
| abstract_inverted_index.revision | 114 |
| abstract_inverted_index.sequence | 194 |
| abstract_inverted_index.teaching | 83 |
| abstract_inverted_index.unpaired | 152, 192 |
| abstract_inverted_index.variable | 37, 75, 87 |
| abstract_inverted_index.framework | 156, 184 |
| abstract_inverted_index.function. | 141 |
| abstract_inverted_index.knowledge | 71 |
| abstract_inverted_index.proposing | 9 |
| abstract_inverted_index.teaching, | 55 |
| abstract_inverted_index.teaching. | 178 |
| abstract_inverted_index.accounting | 167 |
| abstract_inverted_index.framework, | 12 |
| abstract_inverted_index.generative | 11, 25, 42 |
| abstract_inverted_index.likelihood | 47 |
| abstract_inverted_index.Experiments | 179 |
| abstract_inverted_index.alternating | 176 |
| abstract_inverted_index.cooperative | 26, 43, 162 |
| abstract_inverted_index.probability | 16 |
| abstract_inverted_index.properties, | 133 |
| abstract_inverted_index.represented | 22 |
| abstract_inverted_index.statistical | 132 |
| abstract_inverted_index.translation | 6, 171, 190 |
| abstract_inverted_index.consistency, | 166 |
| abstract_inverted_index.cross-domain | 5 |
| abstract_inverted_index.distribution | 17, 65 |
| abstract_inverted_index.energy-based | 32, 58, 105 |
| abstract_inverted_index.translation. | 195 |
| abstract_inverted_index.unsupervised | 4, 188 |
| abstract_inverted_index.Specifically, | 79 |
| abstract_inverted_index.parameterized | 89 |
| abstract_inverted_index.correspondence | 149 |
| abstract_inverted_index.image-to-image | 189 |
| abstract_inverted_index.simultaneously | 157 |
| abstract_inverted_index.encoder-decoder | 92 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.76946367 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |