Learning Division with Neural Arithmetic Logic Modules Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2110.05177
To achieve systematic generalisation, it first makes sense to master simple tasks such as arithmetic. Of the four fundamental arithmetic operations (+,-,$\times$,$÷$), division is considered the most difficult for both humans and computers. In this paper we show that robustly learning division in a systematic manner remains a challenge even at the simplest level of dividing two numbers. We propose two novel approaches for division which we call the Neural Reciprocal Unit (NRU) and the Neural Multiplicative Reciprocal Unit (NMRU), and present improvements for an existing division module, the Real Neural Power Unit (Real NPU). Experiments in learning division with input redundancy on 225 different training sets, find that our proposed modifications to the Real NPU obtains an average success of 85.3$\%$ improving over the original by 15.1$\%$. In light of the suggestion above, our NMRU approach can further improve the success to 91.6$\%$.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2110.05177
- https://arxiv.org/pdf/2110.05177
- OA Status
- green
- Cited By
- 1
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3205950948
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3205950948Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2110.05177Digital Object Identifier
- Title
-
Learning Division with Neural Arithmetic Logic ModulesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-11Full publication date if available
- Authors
-
Bhumika Mistry, Katayoun Farrahi, Jonathon HareList of authors in order
- Landing page
-
https://arxiv.org/abs/2110.05177Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2110.05177Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2110.05177Direct OA link when available
- Concepts
-
Division (mathematics), Arithmetic, Computer science, Mathematics, Artificial intelligence, Algebra over a field, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3205950948 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2110.05177 |
| ids.doi | https://doi.org/10.48550/arxiv.2110.05177 |
| ids.mag | 3205950948 |
| ids.openalex | https://openalex.org/W3205950948 |
| fwci | |
| type | preprint |
| title | Learning Division with Neural Arithmetic Logic Modules |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11063 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9843999743461609 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Rough Sets and Fuzzy Logic |
| topics[1].id | https://openalex.org/T13720 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9761999845504761 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Benford’s Law and Fraud Detection |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9552000164985657 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C60798267 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8188186883926392 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1226939 |
| concepts[0].display_name | Division (mathematics) |
| concepts[1].id | https://openalex.org/C94375191 |
| concepts[1].level | 1 |
| concepts[1].score | 0.774724006652832 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[1].display_name | Arithmetic |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5255324244499207 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3681716322898865 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3594440817832947 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C136119220 |
| concepts[5].level | 2 |
| concepts[5].score | 0.32923710346221924 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[5].display_name | Algebra over a field |
| concepts[6].id | https://openalex.org/C202444582 |
| concepts[6].level | 1 |
| concepts[6].score | 0.10098427534103394 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[6].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/division |
| keywords[0].score | 0.8188186883926392 |
| keywords[0].display_name | Division (mathematics) |
| keywords[1].id | https://openalex.org/keywords/arithmetic |
| keywords[1].score | 0.774724006652832 |
| keywords[1].display_name | Arithmetic |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5255324244499207 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.3681716322898865 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3594440817832947 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[5].score | 0.32923710346221924 |
| keywords[5].display_name | Algebra over a field |
| keywords[6].id | https://openalex.org/keywords/pure-mathematics |
| keywords[6].score | 0.10098427534103394 |
| keywords[6].display_name | Pure mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2110.05177 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2110.05177 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2110.05177 |
| locations[1].id | doi:10.48550/arxiv.2110.05177 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2110.05177 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5064223685 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4555-0121 |
| authorships[0].author.display_name | Bhumika Mistry |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I43439940 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Southampton * |
| authorships[0].institutions[0].id | https://openalex.org/I43439940 |
| authorships[0].institutions[0].ror | https://ror.org/01ryk1543 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I43439940 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Southampton |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bhumika Mistry |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Southampton * |
| authorships[1].author.id | https://openalex.org/A5077531047 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6775-127X |
| authorships[1].author.display_name | Katayoun Farrahi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Katayoun Farrahi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067505586 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2921-4283 |
| authorships[2].author.display_name | Jonathon Hare |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jonathon S. Hare |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2110.05177 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Division with Neural Arithmetic Logic Modules |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11063 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9843999743461609 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Rough Sets and Fuzzy Logic |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2506252583, https://openalex.org/W4238090084, https://openalex.org/W1675413777 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2110.05177 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2110.05177 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2110.05177 |
| primary_location.id | pmh:oai:arXiv.org:2110.05177 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2110.05177 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2110.05177 |
| publication_date | 2021-10-11 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2964121744, https://openalex.org/W3090385198, https://openalex.org/W3017050719, https://openalex.org/W3101634859, https://openalex.org/W2995154758, https://openalex.org/W2962858226, https://openalex.org/W2167101736, https://openalex.org/W2978518939, https://openalex.org/W3124445740, https://openalex.org/W1481984145, https://openalex.org/W2887020936, https://openalex.org/W3016401366 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 43, 47 |
| abstract_inverted_index.In | 33, 128 |
| abstract_inverted_index.Of | 15 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.We | 58 |
| abstract_inverted_index.an | 84, 117 |
| abstract_inverted_index.as | 13 |
| abstract_inverted_index.at | 50 |
| abstract_inverted_index.by | 126 |
| abstract_inverted_index.in | 42, 96 |
| abstract_inverted_index.is | 23 |
| abstract_inverted_index.it | 4 |
| abstract_inverted_index.of | 54, 120, 130 |
| abstract_inverted_index.on | 102 |
| abstract_inverted_index.to | 8, 112, 142 |
| abstract_inverted_index.we | 36, 66 |
| abstract_inverted_index.225 | 103 |
| abstract_inverted_index.NPU | 115 |
| abstract_inverted_index.and | 31, 73, 80 |
| abstract_inverted_index.can | 137 |
| abstract_inverted_index.for | 28, 63, 83 |
| abstract_inverted_index.our | 109, 134 |
| abstract_inverted_index.the | 16, 25, 51, 68, 74, 88, 113, 124, 131, 140 |
| abstract_inverted_index.two | 56, 60 |
| abstract_inverted_index.NMRU | 135 |
| abstract_inverted_index.Real | 89, 114 |
| abstract_inverted_index.Unit | 71, 78, 92 |
| abstract_inverted_index.both | 29 |
| abstract_inverted_index.call | 67 |
| abstract_inverted_index.even | 49 |
| abstract_inverted_index.find | 107 |
| abstract_inverted_index.four | 17 |
| abstract_inverted_index.most | 26 |
| abstract_inverted_index.over | 123 |
| abstract_inverted_index.show | 37 |
| abstract_inverted_index.such | 12 |
| abstract_inverted_index.that | 38, 108 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.with | 99 |
| abstract_inverted_index.(NRU) | 72 |
| abstract_inverted_index.(Real | 93 |
| abstract_inverted_index.NPU). | 94 |
| abstract_inverted_index.Power | 91 |
| abstract_inverted_index.first | 5 |
| abstract_inverted_index.input | 100 |
| abstract_inverted_index.level | 53 |
| abstract_inverted_index.light | 129 |
| abstract_inverted_index.makes | 6 |
| abstract_inverted_index.novel | 61 |
| abstract_inverted_index.paper | 35 |
| abstract_inverted_index.sense | 7 |
| abstract_inverted_index.sets, | 106 |
| abstract_inverted_index.tasks | 11 |
| abstract_inverted_index.which | 65 |
| abstract_inverted_index.Neural | 69, 75, 90 |
| abstract_inverted_index.above, | 133 |
| abstract_inverted_index.humans | 30 |
| abstract_inverted_index.manner | 45 |
| abstract_inverted_index.master | 9 |
| abstract_inverted_index.simple | 10 |
| abstract_inverted_index.(NMRU), | 79 |
| abstract_inverted_index.achieve | 1 |
| abstract_inverted_index.average | 118 |
| abstract_inverted_index.further | 138 |
| abstract_inverted_index.improve | 139 |
| abstract_inverted_index.module, | 87 |
| abstract_inverted_index.obtains | 116 |
| abstract_inverted_index.present | 81 |
| abstract_inverted_index.propose | 59 |
| abstract_inverted_index.remains | 46 |
| abstract_inverted_index.success | 119, 141 |
| abstract_inverted_index.85.3$\%$ | 121 |
| abstract_inverted_index.approach | 136 |
| abstract_inverted_index.dividing | 55 |
| abstract_inverted_index.division | 22, 41, 64, 86, 98 |
| abstract_inverted_index.existing | 85 |
| abstract_inverted_index.learning | 40, 97 |
| abstract_inverted_index.numbers. | 57 |
| abstract_inverted_index.original | 125 |
| abstract_inverted_index.proposed | 110 |
| abstract_inverted_index.robustly | 39 |
| abstract_inverted_index.simplest | 52 |
| abstract_inverted_index.training | 105 |
| abstract_inverted_index.15.1$\%$. | 127 |
| abstract_inverted_index.91.6$\%$. | 143 |
| abstract_inverted_index.challenge | 48 |
| abstract_inverted_index.different | 104 |
| abstract_inverted_index.difficult | 27 |
| abstract_inverted_index.improving | 122 |
| abstract_inverted_index.Reciprocal | 70, 77 |
| abstract_inverted_index.approaches | 62 |
| abstract_inverted_index.arithmetic | 19 |
| abstract_inverted_index.computers. | 32 |
| abstract_inverted_index.considered | 24 |
| abstract_inverted_index.operations | 20 |
| abstract_inverted_index.redundancy | 101 |
| abstract_inverted_index.suggestion | 132 |
| abstract_inverted_index.systematic | 2, 44 |
| abstract_inverted_index.Experiments | 95 |
| abstract_inverted_index.arithmetic. | 14 |
| abstract_inverted_index.fundamental | 18 |
| abstract_inverted_index.improvements | 82 |
| abstract_inverted_index.modifications | 111 |
| abstract_inverted_index.Multiplicative | 76 |
| abstract_inverted_index.generalisation, | 3 |
| abstract_inverted_index.(+,-,$\times$,$÷$), | 21 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |