Learning Dynamics of VLM Finetuning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.11978
Preference-based finetuning of vision--language models (VLMs) is brittle: trivially wrong negatives inject uninformative gradients that destabilize training. We recast alignment as \textbf{learning-dynamics--aware optimization} and introduce \textbf{Cooling-Weighted DPO (CW-DPO)}, a two-stage recipe that explicitly models and exploits the training trajectory. \textbf{Stage 1} performs supervised finetuning with \textbf{gentle negatives}: \textbf{low-weight smoothed supervision} that regularizes the base policy and curbs overconfidence without explicit penalties. \textbf{Stage 2} applies a DPO objective in which the \textbf{negative term is scaled by a cooling weight} computed from the model's \textbf{average token log-probability} on each negative, suppressing uninformative gradients from easy or off-distribution samples while preserving signal from hard negatives. In practice, we emphasize \textbf{on-policy negatives} and allow \textbf{mixed negatives} by blending a controllable fraction of dataset negatives to maintain contrast freshness. Throughout, we instrument training with $Δ\!\log p$ probes on positives and negatives as first-class signals for early stopping, curriculum design, and failure diagnosis. Across diverse VLM tasks, CW-DPO yields \textbf{more stable optimization}, \textbf{better calibration}, and \textbf{higher pairwise win-rates} than SFT-only and vanilla DPO, while \textbf{converging in fewer steps}. Ablations isolate the \textbf{cooling-weight mechanism} as the primary driver of these gains and show complementary benefits from mixing on-policy and dataset negatives. Taken together, our results show that \textbf{smoothing learning dynamics before cooling preferences} is a simple, general principle for robust VLM alignment.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2510.11978
- https://arxiv.org/pdf/2510.11978
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415257533
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415257533Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.11978Digital Object Identifier
- Title
-
Learning Dynamics of VLM FinetuningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-13Full publication date if available
- Authors
-
J. Q. Zhang, Kaitong Cai, Jing Yang, Keze WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.11978Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.11978Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.11978Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415257533 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.11978 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.11978 |
| ids.openalex | https://openalex.org/W4415257533 |
| fwci | |
| type | preprint |
| title | Learning Dynamics of VLM Finetuning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.48080000281333923 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2510.11978 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.11978 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.11978 |
| locations[1].id | doi:10.48550/arxiv.2510.11978 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.11978 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5033621150 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | J. Q. Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Jusheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018936277 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3557-2784 |
| authorships[1].author.display_name | Kaitong Cai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cai, Kaitong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101962723 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3074-6885 |
| authorships[2].author.display_name | Jing Yang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yang, Jing |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5088124671 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7817-8306 |
| authorships[3].author.display_name | Keze Wang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wang, Keze |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.11978 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-17T00:00:00 |
| display_name | Learning Dynamics of VLM Finetuning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.48080000281333923 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.11978 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.11978 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.11978 |
| primary_location.id | pmh:oai:arXiv.org:2510.11978 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.11978 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.11978 |
| publication_date | 2025-10-13 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 28, 64, 75, 114, 207 |
| abstract_inverted_index.1} | 40 |
| abstract_inverted_index.2} | 62 |
| abstract_inverted_index.In | 102 |
| abstract_inverted_index.We | 17 |
| abstract_inverted_index.as | 20, 136, 177 |
| abstract_inverted_index.by | 74, 112 |
| abstract_inverted_index.in | 67, 169 |
| abstract_inverted_index.is | 6, 72, 206 |
| abstract_inverted_index.of | 2, 117, 181 |
| abstract_inverted_index.on | 85, 132 |
| abstract_inverted_index.or | 93 |
| abstract_inverted_index.p$ | 130 |
| abstract_inverted_index.to | 120 |
| abstract_inverted_index.we | 104, 125 |
| abstract_inverted_index.DPO | 26, 65 |
| abstract_inverted_index.VLM | 149, 213 |
| abstract_inverted_index.and | 23, 34, 55, 108, 134, 144, 158, 164, 184, 191 |
| abstract_inverted_index.for | 139, 211 |
| abstract_inverted_index.our | 196 |
| abstract_inverted_index.the | 36, 52, 69, 80, 174, 178 |
| abstract_inverted_index.DPO, | 166 |
| abstract_inverted_index.base | 53 |
| abstract_inverted_index.each | 86 |
| abstract_inverted_index.easy | 92 |
| abstract_inverted_index.from | 79, 91, 99, 188 |
| abstract_inverted_index.hard | 100 |
| abstract_inverted_index.show | 185, 198 |
| abstract_inverted_index.term | 71 |
| abstract_inverted_index.than | 162 |
| abstract_inverted_index.that | 14, 31, 50, 199 |
| abstract_inverted_index.with | 44, 128 |
| abstract_inverted_index.Taken | 194 |
| abstract_inverted_index.allow | 109 |
| abstract_inverted_index.curbs | 56 |
| abstract_inverted_index.early | 140 |
| abstract_inverted_index.fewer | 170 |
| abstract_inverted_index.gains | 183 |
| abstract_inverted_index.these | 182 |
| abstract_inverted_index.token | 83 |
| abstract_inverted_index.which | 68 |
| abstract_inverted_index.while | 96, 167 |
| abstract_inverted_index.wrong | 9 |
| abstract_inverted_index.(VLMs) | 5 |
| abstract_inverted_index.Across | 147 |
| abstract_inverted_index.CW-DPO | 151 |
| abstract_inverted_index.before | 203 |
| abstract_inverted_index.driver | 180 |
| abstract_inverted_index.inject | 11 |
| abstract_inverted_index.mixing | 189 |
| abstract_inverted_index.models | 4, 33 |
| abstract_inverted_index.policy | 54 |
| abstract_inverted_index.probes | 131 |
| abstract_inverted_index.recast | 18 |
| abstract_inverted_index.recipe | 30 |
| abstract_inverted_index.robust | 212 |
| abstract_inverted_index.scaled | 73 |
| abstract_inverted_index.signal | 98 |
| abstract_inverted_index.stable | 154 |
| abstract_inverted_index.tasks, | 150 |
| abstract_inverted_index.yields | 152 |
| abstract_inverted_index.applies | 63 |
| abstract_inverted_index.cooling | 76, 204 |
| abstract_inverted_index.dataset | 118, 192 |
| abstract_inverted_index.design, | 143 |
| abstract_inverted_index.diverse | 148 |
| abstract_inverted_index.failure | 145 |
| abstract_inverted_index.general | 209 |
| abstract_inverted_index.isolate | 173 |
| abstract_inverted_index.model's | 81 |
| abstract_inverted_index.primary | 179 |
| abstract_inverted_index.results | 197 |
| abstract_inverted_index.samples | 95 |
| abstract_inverted_index.signals | 138 |
| abstract_inverted_index.simple, | 208 |
| abstract_inverted_index.steps}. | 171 |
| abstract_inverted_index.vanilla | 165 |
| abstract_inverted_index.weight} | 77 |
| abstract_inverted_index.without | 58 |
| abstract_inverted_index.SFT-only | 163 |
| abstract_inverted_index.benefits | 187 |
| abstract_inverted_index.blending | 113 |
| abstract_inverted_index.brittle: | 7 |
| abstract_inverted_index.computed | 78 |
| abstract_inverted_index.contrast | 122 |
| abstract_inverted_index.dynamics | 202 |
| abstract_inverted_index.explicit | 59 |
| abstract_inverted_index.exploits | 35 |
| abstract_inverted_index.fraction | 116 |
| abstract_inverted_index.learning | 201 |
| abstract_inverted_index.maintain | 121 |
| abstract_inverted_index.pairwise | 160 |
| abstract_inverted_index.performs | 41 |
| abstract_inverted_index.smoothed | 48 |
| abstract_inverted_index.training | 37, 127 |
| abstract_inverted_index.$Δ\!\log | 129 |
| abstract_inverted_index.Ablations | 172 |
| abstract_inverted_index.alignment | 19 |
| abstract_inverted_index.emphasize | 105 |
| abstract_inverted_index.gradients | 13, 90 |
| abstract_inverted_index.introduce | 24 |
| abstract_inverted_index.negative, | 87 |
| abstract_inverted_index.negatives | 10, 119, 135 |
| abstract_inverted_index.objective | 66 |
| abstract_inverted_index.on-policy | 190 |
| abstract_inverted_index.positives | 133 |
| abstract_inverted_index.practice, | 103 |
| abstract_inverted_index.principle | 210 |
| abstract_inverted_index.stopping, | 141 |
| abstract_inverted_index.together, | 195 |
| abstract_inverted_index.training. | 16 |
| abstract_inverted_index.trivially | 8 |
| abstract_inverted_index.two-stage | 29 |
| abstract_inverted_index.(CW-DPO)}, | 27 |
| abstract_inverted_index.alignment. | 214 |
| abstract_inverted_index.curriculum | 142 |
| abstract_inverted_index.diagnosis. | 146 |
| abstract_inverted_index.explicitly | 32 |
| abstract_inverted_index.finetuning | 1, 43 |
| abstract_inverted_index.freshness. | 123 |
| abstract_inverted_index.instrument | 126 |
| abstract_inverted_index.mechanism} | 176 |
| abstract_inverted_index.negatives. | 101, 193 |
| abstract_inverted_index.negatives} | 107, 111 |
| abstract_inverted_index.penalties. | 60 |
| abstract_inverted_index.preserving | 97 |
| abstract_inverted_index.supervised | 42 |
| abstract_inverted_index.win-rates} | 161 |
| abstract_inverted_index.Throughout, | 124 |
| abstract_inverted_index.destabilize | 15 |
| abstract_inverted_index.first-class | 137 |
| abstract_inverted_index.negatives}: | 46 |
| abstract_inverted_index.regularizes | 51 |
| abstract_inverted_index.suppressing | 88 |
| abstract_inverted_index.trajectory. | 38 |
| abstract_inverted_index.\textbf{more | 153 |
| abstract_inverted_index.controllable | 115 |
| abstract_inverted_index.preferences} | 205 |
| abstract_inverted_index.supervision} | 49 |
| abstract_inverted_index.\textbf{Stage | 39, 61 |
| abstract_inverted_index.\textbf{mixed | 110 |
| abstract_inverted_index.calibration}, | 157 |
| abstract_inverted_index.complementary | 186 |
| abstract_inverted_index.optimization} | 22 |
| abstract_inverted_index.uninformative | 12, 89 |
| abstract_inverted_index.\textbf{better | 156 |
| abstract_inverted_index.\textbf{gentle | 45 |
| abstract_inverted_index.\textbf{higher | 159 |
| abstract_inverted_index.optimization}, | 155 |
| abstract_inverted_index.overconfidence | 57 |
| abstract_inverted_index.\textbf{average | 82 |
| abstract_inverted_index.Preference-based | 0 |
| abstract_inverted_index.\textbf{negative | 70 |
| abstract_inverted_index.log-probability} | 84 |
| abstract_inverted_index.off-distribution | 94 |
| abstract_inverted_index.vision--language | 3 |
| abstract_inverted_index.\textbf{on-policy | 106 |
| abstract_inverted_index.\textbf{smoothing | 200 |
| abstract_inverted_index.\textbf{converging | 168 |
| abstract_inverted_index.\textbf{low-weight | 47 |
| abstract_inverted_index.\textbf{cooling-weight | 175 |
| abstract_inverted_index.\textbf{Cooling-Weighted | 25 |
| abstract_inverted_index.\textbf{learning-dynamics--aware | 21 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |