Learning Furniture Compatibility with Graph Neural Networks Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/cvprw50498.2020.00191
We propose a graph neural network (GNN) approach to the problem of predicting the stylistic compatibility of a set of furniture items from images. While most existing results are based on siamese networks which evaluate pairwise compatibility between items, the proposed GNN architecture exploits relational information among groups of items. We present two GNN models, both of which comprise a deep CNN that extracts a feature representation for each image, a gated recurrent unit (GRU) network that models interactions between the furniture items in a set, and an aggregation function that calculates the compatibility score. In the first model, a generalized contrastive loss function that promotes the generation of clustered embeddings for items belonging to the same furniture set is introduced. Also, in the first model, the edge function between nodes in the GRU and the aggregation function are fixed in order to limit model complexity and allow training on smaller datasets; in the second model, the edge function and aggregation function are learned directly from the data. We demonstrate state-of-the art accuracy for compatibility prediction and "fill in the blank" tasks on the Bonn and Singapore furniture datasets. We further introduce a new dataset, called the Target Furniture Collections dataset, which contains over 6000 furniture items that have been hand-curated by stylists to make up 1632 compatible sets. We also demonstrate superior prediction accuracy on this dataset.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/cvprw50498.2020.00191
- OA Status
- green
- Cited By
- 3
- References
- 34
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3017140696
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3017140696Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/cvprw50498.2020.00191Digital Object Identifier
- Title
-
Learning Furniture Compatibility with Graph Neural NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-01Full publication date if available
- Authors
-
Luisa F. Polanía, Mauricio Flores, Yiran Li, Matthew NoklebyList of authors in order
- Landing page
-
https://doi.org/10.1109/cvprw50498.2020.00191Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2004.07268Direct OA link when available
- Concepts
-
Computer science, Pairwise comparison, Compatibility (geochemistry), Artificial intelligence, Exploit, Graph, Architecture, Machine learning, Data mining, Pattern recognition (psychology), Theoretical computer science, Engineering, Art, Chemical engineering, Visual arts, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3017140696 |
|---|---|
| doi | https://doi.org/10.1109/cvprw50498.2020.00191 |
| ids.doi | https://doi.org/10.48550/arxiv.2004.07268 |
| ids.mag | 3017140696 |
| ids.openalex | https://openalex.org/W3017140696 |
| fwci | 0.31490195 |
| type | preprint |
| title | Learning Furniture Compatibility with Graph Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11605 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9805999994277954 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Visual Attention and Saliency Detection |
| topics[1].id | https://openalex.org/T13699 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9602000117301941 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3322 |
| topics[1].subfield.display_name | Urban Studies |
| topics[1].display_name | Public Spaces through Art |
| topics[2].id | https://openalex.org/T12650 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9491999745368958 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Aesthetic Perception and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7658522129058838 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C184898388 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7556672692298889 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1435712 |
| concepts[1].display_name | Pairwise comparison |
| concepts[2].id | https://openalex.org/C2778648169 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7454237341880798 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q967768 |
| concepts[2].display_name | Compatibility (geochemistry) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5396928787231445 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C165696696 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5227056741714478 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[4].display_name | Exploit |
| concepts[5].id | https://openalex.org/C132525143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47773855924606323 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[5].display_name | Graph |
| concepts[6].id | https://openalex.org/C123657996 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4740433692932129 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[6].display_name | Architecture |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36156749725341797 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35930466651916504 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.35056206583976746 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.26164716482162476 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0713324248790741 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C142362112 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[12].display_name | Art |
| concepts[13].id | https://openalex.org/C42360764 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q83588 |
| concepts[13].display_name | Chemical engineering |
| concepts[14].id | https://openalex.org/C153349607 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[14].display_name | Visual arts |
| concepts[15].id | https://openalex.org/C38652104 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[15].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7658522129058838 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/pairwise-comparison |
| keywords[1].score | 0.7556672692298889 |
| keywords[1].display_name | Pairwise comparison |
| keywords[2].id | https://openalex.org/keywords/compatibility |
| keywords[2].score | 0.7454237341880798 |
| keywords[2].display_name | Compatibility (geochemistry) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5396928787231445 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/exploit |
| keywords[4].score | 0.5227056741714478 |
| keywords[4].display_name | Exploit |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.47773855924606323 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/architecture |
| keywords[6].score | 0.4740433692932129 |
| keywords[6].display_name | Architecture |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.36156749725341797 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.35930466651916504 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.35056206583976746 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.26164716482162476 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.0713324248790741 |
| keywords[11].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1109/cvprw50498.2020.00191 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) |
| locations[0].landing_page_url | https://doi.org/10.1109/cvprw50498.2020.00191 |
| locations[1].id | pmh:oai:arXiv.org:2004.07268 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2004.07268 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2004.07268 |
| locations[2].id | mag:3017140696 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | https://arxiv.org/pdf/2004.07268v1 |
| locations[3].id | doi:10.48550/arxiv.2004.07268 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2004.07268 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5080932959 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Luisa F. Polanía |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Luisa F. Polania |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5049675839 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mauricio Flores |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mauricio Flores |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100427551 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5502-2106 |
| authorships[2].author.display_name | Yiran Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yiran Li |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5068254472 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3454-4212 |
| authorships[3].author.display_name | Matthew Nokleby |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Matthew Nokleby |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2004.07268 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Furniture Compatibility with Graph Neural Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11605 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9805999994277954 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Visual Attention and Saliency Detection |
| related_works | https://openalex.org/W2949529330, https://openalex.org/W2889048389, https://openalex.org/W3034968597, https://openalex.org/W2071864906, https://openalex.org/W3197716900, https://openalex.org/W2883493457, https://openalex.org/W3087323553, https://openalex.org/W3029377692, https://openalex.org/W3031465366, https://openalex.org/W2402169617, https://openalex.org/W2406212790, https://openalex.org/W2914756689, https://openalex.org/W2998712893, https://openalex.org/W2750636750, https://openalex.org/W2246998778, https://openalex.org/W3138221188, https://openalex.org/W2779954854, https://openalex.org/W2954487216, https://openalex.org/W3137602479, https://openalex.org/W2525033719 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2004.07268 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2004.07268 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2004.07268 |
| primary_location.id | doi:10.1109/cvprw50498.2020.00191 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) |
| primary_location.landing_page_url | https://doi.org/10.1109/cvprw50498.2020.00191 |
| publication_date | 2020-06-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W6738964360, https://openalex.org/W2737102415, https://openalex.org/W2963857660, https://openalex.org/W2076434944, https://openalex.org/W2734103229, https://openalex.org/W6726873649, https://openalex.org/W2090621143, https://openalex.org/W2064723547, https://openalex.org/W2027731328, https://openalex.org/W2783106936, https://openalex.org/W2912727434, https://openalex.org/W2135442311, https://openalex.org/W2912053445, https://openalex.org/W6631943919, https://openalex.org/W2535561795, https://openalex.org/W2962629618, https://openalex.org/W1501856433, https://openalex.org/W2021354639, https://openalex.org/W3025742428, https://openalex.org/W6756828940, https://openalex.org/W2899672884, https://openalex.org/W2792276797, https://openalex.org/W2970283582, https://openalex.org/W2116341502, https://openalex.org/W2802332393, https://openalex.org/W2624431344, https://openalex.org/W2904615721, https://openalex.org/W2962767366, https://openalex.org/W1533861849, https://openalex.org/W2766453196, https://openalex.org/W2944033541, https://openalex.org/W3104731853, https://openalex.org/W3099462466, https://openalex.org/W2519887557 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 2, 17, 59, 64, 70, 84, 99, 192 |
| abstract_inverted_index.In | 95 |
| abstract_inverted_index.We | 0, 50, 168, 189, 219 |
| abstract_inverted_index.an | 87 |
| abstract_inverted_index.by | 211 |
| abstract_inverted_index.in | 83, 122, 131, 140, 152, 178 |
| abstract_inverted_index.is | 119 |
| abstract_inverted_index.of | 11, 16, 19, 48, 56, 108 |
| abstract_inverted_index.on | 30, 149, 182, 225 |
| abstract_inverted_index.to | 8, 114, 142, 213 |
| abstract_inverted_index.up | 215 |
| abstract_inverted_index.CNN | 61 |
| abstract_inverted_index.GNN | 41, 53 |
| abstract_inverted_index.GRU | 133 |
| abstract_inverted_index.and | 86, 134, 146, 159, 176, 185 |
| abstract_inverted_index.are | 28, 138, 162 |
| abstract_inverted_index.art | 171 |
| abstract_inverted_index.for | 67, 111, 173 |
| abstract_inverted_index.new | 193 |
| abstract_inverted_index.set | 18, 118 |
| abstract_inverted_index.the | 9, 13, 39, 80, 92, 96, 106, 115, 123, 126, 132, 135, 153, 156, 166, 179, 183, 196 |
| abstract_inverted_index.two | 52 |
| abstract_inverted_index.1632 | 216 |
| abstract_inverted_index.6000 | 204 |
| abstract_inverted_index.Bonn | 184 |
| abstract_inverted_index.also | 220 |
| abstract_inverted_index.been | 209 |
| abstract_inverted_index.both | 55 |
| abstract_inverted_index.deep | 60 |
| abstract_inverted_index.each | 68 |
| abstract_inverted_index.edge | 127, 157 |
| abstract_inverted_index.from | 22, 165 |
| abstract_inverted_index.have | 208 |
| abstract_inverted_index.loss | 102 |
| abstract_inverted_index.make | 214 |
| abstract_inverted_index.most | 25 |
| abstract_inverted_index.over | 203 |
| abstract_inverted_index.same | 116 |
| abstract_inverted_index.set, | 85 |
| abstract_inverted_index.that | 62, 76, 90, 104, 207 |
| abstract_inverted_index.this | 226 |
| abstract_inverted_index.unit | 73 |
| abstract_inverted_index."fill | 177 |
| abstract_inverted_index.(GNN) | 6 |
| abstract_inverted_index.(GRU) | 74 |
| abstract_inverted_index.Also, | 121 |
| abstract_inverted_index.While | 24 |
| abstract_inverted_index.allow | 147 |
| abstract_inverted_index.among | 46 |
| abstract_inverted_index.based | 29 |
| abstract_inverted_index.data. | 167 |
| abstract_inverted_index.first | 97, 124 |
| abstract_inverted_index.fixed | 139 |
| abstract_inverted_index.gated | 71 |
| abstract_inverted_index.graph | 3 |
| abstract_inverted_index.items | 21, 82, 112, 206 |
| abstract_inverted_index.limit | 143 |
| abstract_inverted_index.model | 144 |
| abstract_inverted_index.nodes | 130 |
| abstract_inverted_index.order | 141 |
| abstract_inverted_index.sets. | 218 |
| abstract_inverted_index.tasks | 181 |
| abstract_inverted_index.which | 33, 57, 201 |
| abstract_inverted_index.Target | 197 |
| abstract_inverted_index.blank" | 180 |
| abstract_inverted_index.called | 195 |
| abstract_inverted_index.groups | 47 |
| abstract_inverted_index.image, | 69 |
| abstract_inverted_index.items, | 38 |
| abstract_inverted_index.items. | 49 |
| abstract_inverted_index.model, | 98, 125, 155 |
| abstract_inverted_index.models | 77 |
| abstract_inverted_index.neural | 4 |
| abstract_inverted_index.score. | 94 |
| abstract_inverted_index.second | 154 |
| abstract_inverted_index.between | 37, 79, 129 |
| abstract_inverted_index.feature | 65 |
| abstract_inverted_index.further | 190 |
| abstract_inverted_index.images. | 23 |
| abstract_inverted_index.learned | 163 |
| abstract_inverted_index.models, | 54 |
| abstract_inverted_index.network | 5, 75 |
| abstract_inverted_index.present | 51 |
| abstract_inverted_index.problem | 10 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.results | 27 |
| abstract_inverted_index.siamese | 31 |
| abstract_inverted_index.smaller | 150 |
| abstract_inverted_index.accuracy | 172, 224 |
| abstract_inverted_index.approach | 7 |
| abstract_inverted_index.comprise | 58 |
| abstract_inverted_index.contains | 202 |
| abstract_inverted_index.dataset, | 194, 200 |
| abstract_inverted_index.dataset. | 227 |
| abstract_inverted_index.directly | 164 |
| abstract_inverted_index.evaluate | 34 |
| abstract_inverted_index.existing | 26 |
| abstract_inverted_index.exploits | 43 |
| abstract_inverted_index.extracts | 63 |
| abstract_inverted_index.function | 89, 103, 128, 137, 158, 161 |
| abstract_inverted_index.networks | 32 |
| abstract_inverted_index.pairwise | 35 |
| abstract_inverted_index.promotes | 105 |
| abstract_inverted_index.proposed | 40 |
| abstract_inverted_index.stylists | 212 |
| abstract_inverted_index.superior | 222 |
| abstract_inverted_index.training | 148 |
| abstract_inverted_index.Furniture | 198 |
| abstract_inverted_index.Singapore | 186 |
| abstract_inverted_index.belonging | 113 |
| abstract_inverted_index.clustered | 109 |
| abstract_inverted_index.datasets. | 188 |
| abstract_inverted_index.datasets; | 151 |
| abstract_inverted_index.furniture | 20, 81, 117, 187, 205 |
| abstract_inverted_index.introduce | 191 |
| abstract_inverted_index.recurrent | 72 |
| abstract_inverted_index.stylistic | 14 |
| abstract_inverted_index.calculates | 91 |
| abstract_inverted_index.compatible | 217 |
| abstract_inverted_index.complexity | 145 |
| abstract_inverted_index.embeddings | 110 |
| abstract_inverted_index.generation | 107 |
| abstract_inverted_index.predicting | 12 |
| abstract_inverted_index.prediction | 175, 223 |
| abstract_inverted_index.relational | 44 |
| abstract_inverted_index.Collections | 199 |
| abstract_inverted_index.aggregation | 88, 136, 160 |
| abstract_inverted_index.contrastive | 101 |
| abstract_inverted_index.demonstrate | 169, 221 |
| abstract_inverted_index.generalized | 100 |
| abstract_inverted_index.information | 45 |
| abstract_inverted_index.introduced. | 120 |
| abstract_inverted_index.architecture | 42 |
| abstract_inverted_index.hand-curated | 210 |
| abstract_inverted_index.interactions | 78 |
| abstract_inverted_index.state-of-the | 170 |
| abstract_inverted_index.compatibility | 15, 36, 93, 174 |
| abstract_inverted_index.representation | 66 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.56225002 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |