Learning Generative Models using Denoising Density Estimators Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2001.02728
Learning probabilistic models that can estimate the density of a given set of samples, and generate samples from that density, is one of the fundamental challenges in unsupervised machine learning. We introduce a new generative model based on denoising density estimators (DDEs), which are scalar functions parameterized by neural networks, that are efficiently trained to represent kernel density estimators of the data. Leveraging DDEs, our main contribution is a novel technique to obtain generative models by minimizing the KL-divergence directly. We prove that our algorithm for obtaining generative models is guaranteed to converge to the correct solution. Our approach does not require specific network architecture as in normalizing flows, nor use ordinary differential equation solvers as in continuous normalizing flows. Experimental results demonstrate substantial improvement in density estimation and competitive performance in generative model training.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2001.02728
- https://arxiv.org/pdf/2001.02728
- OA Status
- green
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386480433
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386480433Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2001.02728Digital Object Identifier
- Title
-
Learning Generative Models using Denoising Density EstimatorsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-08Full publication date if available
- Authors
-
Siavash Arjomand Bigdeli, Geng Lin, Tiziano Portenier, L. A. Dunbar, Matthias ZwickerList of authors in order
- Landing page
-
https://arxiv.org/abs/2001.02728Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2001.02728Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2001.02728Direct OA link when available
- Concepts
-
Estimator, Kernel density estimation, Density estimation, Computer science, Kernel (algebra), Artificial neural network, Parameterized complexity, Divergence (linguistics), Generative model, Machine learning, Artificial intelligence, Scalar (mathematics), Applied mathematics, Generative grammar, Algorithm, Mathematical optimization, Mathematics, Statistics, Combinatorics, Philosophy, Geometry, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 2, 2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386480433 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2001.02728 |
| ids.doi | https://doi.org/10.48550/arxiv.2001.02728 |
| ids.openalex | https://openalex.org/W4386480433 |
| fwci | |
| type | preprint |
| title | Learning Generative Models using Denoising Density Estimators |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.996399998664856 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[1].id | https://openalex.org/T11309 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9767000079154968 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Music and Audio Processing |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9729999899864197 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185429906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7337956428527832 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[0].display_name | Estimator |
| concepts[1].id | https://openalex.org/C71134354 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6401278376579285 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q458825 |
| concepts[1].display_name | Kernel density estimation |
| concepts[2].id | https://openalex.org/C189508267 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6058013439178467 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17088227 |
| concepts[2].display_name | Density estimation |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6040161848068237 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C74193536 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5187711715698242 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[4].display_name | Kernel (algebra) |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5141084790229797 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C165464430 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5137292146682739 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1570441 |
| concepts[6].display_name | Parameterized complexity |
| concepts[7].id | https://openalex.org/C207390915 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5058769583702087 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1230525 |
| concepts[7].display_name | Divergence (linguistics) |
| concepts[8].id | https://openalex.org/C167966045 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4867587089538574 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[8].display_name | Generative model |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4774501919746399 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.47301653027534485 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C57691317 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4184778332710266 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1289248 |
| concepts[11].display_name | Scalar (mathematics) |
| concepts[12].id | https://openalex.org/C28826006 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4074234366416931 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[12].display_name | Applied mathematics |
| concepts[13].id | https://openalex.org/C39890363 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4009261727333069 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[13].display_name | Generative grammar |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.38106974959373474 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C126255220 |
| concepts[15].level | 1 |
| concepts[15].score | 0.3554191291332245 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[15].display_name | Mathematical optimization |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.32150059938430786 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.08419546484947205 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C114614502 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[18].display_name | Combinatorics |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C2524010 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[20].display_name | Geometry |
| concepts[21].id | https://openalex.org/C41895202 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[21].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/estimator |
| keywords[0].score | 0.7337956428527832 |
| keywords[0].display_name | Estimator |
| keywords[1].id | https://openalex.org/keywords/kernel-density-estimation |
| keywords[1].score | 0.6401278376579285 |
| keywords[1].display_name | Kernel density estimation |
| keywords[2].id | https://openalex.org/keywords/density-estimation |
| keywords[2].score | 0.6058013439178467 |
| keywords[2].display_name | Density estimation |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6040161848068237 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/kernel |
| keywords[4].score | 0.5187711715698242 |
| keywords[4].display_name | Kernel (algebra) |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5141084790229797 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/parameterized-complexity |
| keywords[6].score | 0.5137292146682739 |
| keywords[6].display_name | Parameterized complexity |
| keywords[7].id | https://openalex.org/keywords/divergence |
| keywords[7].score | 0.5058769583702087 |
| keywords[7].display_name | Divergence (linguistics) |
| keywords[8].id | https://openalex.org/keywords/generative-model |
| keywords[8].score | 0.4867587089538574 |
| keywords[8].display_name | Generative model |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4774501919746399 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.47301653027534485 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/scalar |
| keywords[11].score | 0.4184778332710266 |
| keywords[11].display_name | Scalar (mathematics) |
| keywords[12].id | https://openalex.org/keywords/applied-mathematics |
| keywords[12].score | 0.4074234366416931 |
| keywords[12].display_name | Applied mathematics |
| keywords[13].id | https://openalex.org/keywords/generative-grammar |
| keywords[13].score | 0.4009261727333069 |
| keywords[13].display_name | Generative grammar |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.38106974959373474 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[15].score | 0.3554191291332245 |
| keywords[15].display_name | Mathematical optimization |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.32150059938430786 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/statistics |
| keywords[17].score | 0.08419546484947205 |
| keywords[17].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2001.02728 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2001.02728 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2001.02728 |
| locations[1].id | doi:10.48550/arxiv.2001.02728 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2001.02728 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5024315163 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2569-6473 |
| authorships[0].author.display_name | Siavash Arjomand Bigdeli |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bigdeli, Siavash A. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5045682736 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-6718-6757 |
| authorships[1].author.display_name | Geng Lin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lin, Geng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5036633606 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1766-1705 |
| authorships[2].author.display_name | Tiziano Portenier |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Portenier, Tiziano |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5118899624 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-3379-6170 |
| authorships[3].author.display_name | L. A. Dunbar |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dunbar, L. Andrea |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5014079156 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8630-5515 |
| authorships[4].author.display_name | Matthias Zwicker |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zwicker, Matthias |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2001.02728 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Generative Models using Denoising Density Estimators |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.996399998664856 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W4365211920, https://openalex.org/W3014948380, https://openalex.org/W1482149696, https://openalex.org/W2583877436, https://openalex.org/W4380551139, https://openalex.org/W4317695495, https://openalex.org/W4287117424, https://openalex.org/W4387506531, https://openalex.org/W4238433571, https://openalex.org/W3174044702 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2001.02728 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2001.02728 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2001.02728 |
| primary_location.id | pmh:oai:arXiv.org:2001.02728 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2001.02728 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2001.02728 |
| publication_date | 2020-01-08 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 32, 68 |
| abstract_inverted_index.We | 30, 80 |
| abstract_inverted_index.as | 105, 115 |
| abstract_inverted_index.by | 47, 75 |
| abstract_inverted_index.in | 26, 106, 116, 125, 131 |
| abstract_inverted_index.is | 20, 67, 89 |
| abstract_inverted_index.of | 8, 12, 22, 59 |
| abstract_inverted_index.on | 37 |
| abstract_inverted_index.to | 54, 71, 91, 93 |
| abstract_inverted_index.Our | 97 |
| abstract_inverted_index.and | 14, 128 |
| abstract_inverted_index.are | 43, 51 |
| abstract_inverted_index.can | 4 |
| abstract_inverted_index.for | 85 |
| abstract_inverted_index.new | 33 |
| abstract_inverted_index.nor | 109 |
| abstract_inverted_index.not | 100 |
| abstract_inverted_index.one | 21 |
| abstract_inverted_index.our | 64, 83 |
| abstract_inverted_index.set | 11 |
| abstract_inverted_index.the | 6, 23, 60, 77, 94 |
| abstract_inverted_index.use | 110 |
| abstract_inverted_index.does | 99 |
| abstract_inverted_index.from | 17 |
| abstract_inverted_index.main | 65 |
| abstract_inverted_index.that | 3, 18, 50, 82 |
| abstract_inverted_index.DDEs, | 63 |
| abstract_inverted_index.based | 36 |
| abstract_inverted_index.data. | 61 |
| abstract_inverted_index.given | 10 |
| abstract_inverted_index.model | 35, 133 |
| abstract_inverted_index.novel | 69 |
| abstract_inverted_index.prove | 81 |
| abstract_inverted_index.which | 42 |
| abstract_inverted_index.flows, | 108 |
| abstract_inverted_index.flows. | 119 |
| abstract_inverted_index.kernel | 56 |
| abstract_inverted_index.models | 2, 74, 88 |
| abstract_inverted_index.neural | 48 |
| abstract_inverted_index.obtain | 72 |
| abstract_inverted_index.scalar | 44 |
| abstract_inverted_index.(DDEs), | 41 |
| abstract_inverted_index.correct | 95 |
| abstract_inverted_index.density | 7, 39, 57, 126 |
| abstract_inverted_index.machine | 28 |
| abstract_inverted_index.network | 103 |
| abstract_inverted_index.require | 101 |
| abstract_inverted_index.results | 121 |
| abstract_inverted_index.samples | 16 |
| abstract_inverted_index.solvers | 114 |
| abstract_inverted_index.trained | 53 |
| abstract_inverted_index.Learning | 0 |
| abstract_inverted_index.approach | 98 |
| abstract_inverted_index.converge | 92 |
| abstract_inverted_index.density, | 19 |
| abstract_inverted_index.equation | 113 |
| abstract_inverted_index.estimate | 5 |
| abstract_inverted_index.generate | 15 |
| abstract_inverted_index.ordinary | 111 |
| abstract_inverted_index.samples, | 13 |
| abstract_inverted_index.specific | 102 |
| abstract_inverted_index.algorithm | 84 |
| abstract_inverted_index.denoising | 38 |
| abstract_inverted_index.directly. | 79 |
| abstract_inverted_index.functions | 45 |
| abstract_inverted_index.introduce | 31 |
| abstract_inverted_index.learning. | 29 |
| abstract_inverted_index.networks, | 49 |
| abstract_inverted_index.obtaining | 86 |
| abstract_inverted_index.represent | 55 |
| abstract_inverted_index.solution. | 96 |
| abstract_inverted_index.technique | 70 |
| abstract_inverted_index.training. | 134 |
| abstract_inverted_index.Leveraging | 62 |
| abstract_inverted_index.challenges | 25 |
| abstract_inverted_index.continuous | 117 |
| abstract_inverted_index.estimation | 127 |
| abstract_inverted_index.estimators | 40, 58 |
| abstract_inverted_index.generative | 34, 73, 87, 132 |
| abstract_inverted_index.guaranteed | 90 |
| abstract_inverted_index.minimizing | 76 |
| abstract_inverted_index.competitive | 129 |
| abstract_inverted_index.demonstrate | 122 |
| abstract_inverted_index.efficiently | 52 |
| abstract_inverted_index.fundamental | 24 |
| abstract_inverted_index.improvement | 124 |
| abstract_inverted_index.normalizing | 107, 118 |
| abstract_inverted_index.performance | 130 |
| abstract_inverted_index.substantial | 123 |
| abstract_inverted_index.Experimental | 120 |
| abstract_inverted_index.architecture | 104 |
| abstract_inverted_index.contribution | 66 |
| abstract_inverted_index.differential | 112 |
| abstract_inverted_index.unsupervised | 27 |
| abstract_inverted_index.KL-divergence | 78 |
| abstract_inverted_index.parameterized | 46 |
| abstract_inverted_index.probabilistic | 1 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |