Learning Graph-Enhanced Commander-Executor for Multi-Agent Navigation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2302.04094
This paper investigates the multi-agent navigation problem, which requires multiple agents to reach the target goals in a limited time. Multi-agent reinforcement learning (MARL) has shown promising results for solving this issue. However, it is inefficient for MARL to directly explore the (nearly) optimal policy in the large search space, which is exacerbated as the agent number increases (e.g., 10+ agents) or the environment is more complex (e.g., 3D simulator). Goal-conditioned hierarchical reinforcement learning (HRL) provides a promising direction to tackle this challenge by introducing a hierarchical structure to decompose the search space, where the low-level policy predicts primitive actions in the guidance of the goals derived from the high-level policy. In this paper, we propose Multi-Agent Graph-Enhanced Commander-Executor (MAGE-X), a graph-based goal-conditioned hierarchical method for multi-agent navigation tasks. MAGE-X comprises a high-level Goal Commander and a low-level Action Executor. The Goal Commander predicts the probability distribution of goals and leverages them to assign each agent the most appropriate final target. The Action Executor utilizes graph neural networks (GNN) to construct a subgraph for each agent that only contains crucial partners to improve cooperation. Additionally, the Goal Encoder in the Action Executor captures the relationship between the agent and the designated goal to encourage the agent to reach the final target. The results show that MAGE-X outperforms the state-of-the-art MARL baselines with a 100% success rate with only 3 million training steps in multi-agent particle environments (MPE) with 50 agents, and at least a 12% higher success rate and 2x higher data efficiency in a more complicated quadrotor 3D navigation task.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2302.04094
- https://arxiv.org/pdf/2302.04094
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4319793517
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4319793517Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2302.04094Digital Object Identifier
- Title
-
Learning Graph-Enhanced Commander-Executor for Multi-Agent NavigationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-08Full publication date if available
- Authors
-
Xinyi Yang, Shi‐Yu Huang, Yiwen Sun, Yuxiang Yang, Chao Yu, Wei-Wei Tu, Huazhong Yang, Yu WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2302.04094Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2302.04094Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2302.04094Direct OA link when available
- Concepts
-
Executor, Reinforcement learning, Computer science, Graph, Action (physics), Artificial intelligence, State space, Distributed computing, State (computer science), Theoretical computer science, Algorithm, Mathematics, Political science, Physics, Quantum mechanics, Statistics, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4319793517 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2302.04094 |
| ids.doi | https://doi.org/10.48550/arxiv.2302.04094 |
| ids.openalex | https://openalex.org/W4319793517 |
| fwci | |
| type | preprint |
| title | Learning Graph-Enhanced Commander-Executor for Multi-Agent Navigation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10462 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Reinforcement Learning in Robotics |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T10586 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Robotic Path Planning Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C180591056 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9935472011566162 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q654437 |
| concepts[0].display_name | Executor |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8429274559020996 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7011926174163818 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C132525143 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6359056234359741 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[3].display_name | Graph |
| concepts[4].id | https://openalex.org/C2780791683 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5847672820091248 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q846785 |
| concepts[4].display_name | Action (physics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.44785526394844055 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C72434380 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4368167519569397 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q230930 |
| concepts[6].display_name | State space |
| concepts[7].id | https://openalex.org/C120314980 |
| concepts[7].level | 1 |
| concepts[7].score | 0.43604621291160583 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[7].display_name | Distributed computing |
| concepts[8].id | https://openalex.org/C48103436 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4228634834289551 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[8].display_name | State (computer science) |
| concepts[9].id | https://openalex.org/C80444323 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33081820607185364 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[9].display_name | Theoretical computer science |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1576048731803894 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.10337060689926147 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C17744445 |
| concepts[12].level | 0 |
| concepts[12].score | 0.07472479343414307 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[12].display_name | Political science |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C199539241 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[16].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/executor |
| keywords[0].score | 0.9935472011566162 |
| keywords[0].display_name | Executor |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.8429274559020996 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7011926174163818 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/graph |
| keywords[3].score | 0.6359056234359741 |
| keywords[3].display_name | Graph |
| keywords[4].id | https://openalex.org/keywords/action |
| keywords[4].score | 0.5847672820091248 |
| keywords[4].display_name | Action (physics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.44785526394844055 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/state-space |
| keywords[6].score | 0.4368167519569397 |
| keywords[6].display_name | State space |
| keywords[7].id | https://openalex.org/keywords/distributed-computing |
| keywords[7].score | 0.43604621291160583 |
| keywords[7].display_name | Distributed computing |
| keywords[8].id | https://openalex.org/keywords/state |
| keywords[8].score | 0.4228634834289551 |
| keywords[8].display_name | State (computer science) |
| keywords[9].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[9].score | 0.33081820607185364 |
| keywords[9].display_name | Theoretical computer science |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.1576048731803894 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.10337060689926147 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/political-science |
| keywords[12].score | 0.07472479343414307 |
| keywords[12].display_name | Political science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2302.04094 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2302.04094 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2302.04094 |
| locations[1].id | doi:10.48550/arxiv.2302.04094 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2302.04094 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100762293 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2398-8413 |
| authorships[0].author.display_name | Xinyi Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Xinyi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085636078 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3721-987X |
| authorships[1].author.display_name | Shi‐Yu Huang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huang, Shiyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101286305 |
| authorships[2].author.orcid | https://orcid.org/0009-0008-6973-7402 |
| authorships[2].author.display_name | Yiwen Sun |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sun, Yiwen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5112848590 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-7855-933X |
| authorships[3].author.display_name | Yuxiang Yang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yang, Yuxiang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100622626 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1517-2564 |
| authorships[4].author.display_name | Chao Yu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yu, Chao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5032604295 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2407-0252 |
| authorships[5].author.display_name | Wei-Wei Tu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Tu, Wei-Wei |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5023755254 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2421-353X |
| authorships[6].author.display_name | Huazhong Yang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yang, Huazhong |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100445061 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6108-5157 |
| authorships[7].author.display_name | Yu Wang |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Wang, Yu |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2302.04094 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Graph-Enhanced Commander-Executor for Multi-Agent Navigation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10462 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Reinforcement Learning in Robotics |
| related_works | https://openalex.org/W3132876088, https://openalex.org/W4237320244, https://openalex.org/W3107299409, https://openalex.org/W3044912482, https://openalex.org/W3015007115, https://openalex.org/W4225571923, https://openalex.org/W3212257828, https://openalex.org/W4297873223, https://openalex.org/W2350784623, https://openalex.org/W2126211886 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2302.04094 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2302.04094 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2302.04094 |
| primary_location.id | pmh:oai:arXiv.org:2302.04094 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2302.04094 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2302.04094 |
| publication_date | 2023-02-08 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.3 | 228 |
| abstract_inverted_index.a | 17, 76, 85, 120, 131, 136, 171, 222, 243, 254 |
| abstract_inverted_index.2x | 249 |
| abstract_inverted_index.3D | 68, 258 |
| abstract_inverted_index.50 | 238 |
| abstract_inverted_index.In | 111 |
| abstract_inverted_index.as | 53 |
| abstract_inverted_index.at | 241 |
| abstract_inverted_index.by | 83 |
| abstract_inverted_index.in | 16, 45, 100, 188, 232, 253 |
| abstract_inverted_index.is | 34, 51, 64 |
| abstract_inverted_index.it | 33 |
| abstract_inverted_index.of | 103, 147 |
| abstract_inverted_index.or | 61 |
| abstract_inverted_index.to | 11, 38, 79, 88, 152, 169, 181, 202, 206 |
| abstract_inverted_index.we | 114 |
| abstract_inverted_index.10+ | 59 |
| abstract_inverted_index.12% | 244 |
| abstract_inverted_index.The | 140, 161, 211 |
| abstract_inverted_index.and | 135, 149, 198, 240, 248 |
| abstract_inverted_index.for | 28, 36, 125, 173 |
| abstract_inverted_index.has | 24 |
| abstract_inverted_index.the | 3, 13, 41, 46, 54, 62, 90, 94, 101, 104, 108, 144, 156, 185, 189, 193, 196, 199, 204, 208, 217 |
| abstract_inverted_index.100% | 223 |
| abstract_inverted_index.Goal | 133, 141, 186 |
| abstract_inverted_index.MARL | 37, 219 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.data | 251 |
| abstract_inverted_index.each | 154, 174 |
| abstract_inverted_index.from | 107 |
| abstract_inverted_index.goal | 201 |
| abstract_inverted_index.more | 65, 255 |
| abstract_inverted_index.most | 157 |
| abstract_inverted_index.only | 177, 227 |
| abstract_inverted_index.rate | 225, 247 |
| abstract_inverted_index.show | 213 |
| abstract_inverted_index.that | 176, 214 |
| abstract_inverted_index.them | 151 |
| abstract_inverted_index.this | 30, 81, 112 |
| abstract_inverted_index.with | 221, 226, 237 |
| abstract_inverted_index.(GNN) | 168 |
| abstract_inverted_index.(HRL) | 74 |
| abstract_inverted_index.(MPE) | 236 |
| abstract_inverted_index.agent | 55, 155, 175, 197, 205 |
| abstract_inverted_index.final | 159, 209 |
| abstract_inverted_index.goals | 15, 105, 148 |
| abstract_inverted_index.graph | 165 |
| abstract_inverted_index.large | 47 |
| abstract_inverted_index.least | 242 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.reach | 12, 207 |
| abstract_inverted_index.shown | 25 |
| abstract_inverted_index.steps | 231 |
| abstract_inverted_index.task. | 260 |
| abstract_inverted_index.time. | 19 |
| abstract_inverted_index.where | 93 |
| abstract_inverted_index.which | 7, 50 |
| abstract_inverted_index.(MARL) | 23 |
| abstract_inverted_index.(e.g., | 58, 67 |
| abstract_inverted_index.Action | 138, 162, 190 |
| abstract_inverted_index.MAGE-X | 129, 215 |
| abstract_inverted_index.agents | 10 |
| abstract_inverted_index.assign | 153 |
| abstract_inverted_index.higher | 245, 250 |
| abstract_inverted_index.issue. | 31 |
| abstract_inverted_index.method | 124 |
| abstract_inverted_index.neural | 166 |
| abstract_inverted_index.number | 56 |
| abstract_inverted_index.paper, | 113 |
| abstract_inverted_index.policy | 44, 96 |
| abstract_inverted_index.search | 48, 91 |
| abstract_inverted_index.space, | 49, 92 |
| abstract_inverted_index.tackle | 80 |
| abstract_inverted_index.target | 14 |
| abstract_inverted_index.tasks. | 128 |
| abstract_inverted_index.Encoder | 187 |
| abstract_inverted_index.actions | 99 |
| abstract_inverted_index.agents) | 60 |
| abstract_inverted_index.agents, | 239 |
| abstract_inverted_index.between | 195 |
| abstract_inverted_index.complex | 66 |
| abstract_inverted_index.crucial | 179 |
| abstract_inverted_index.derived | 106 |
| abstract_inverted_index.explore | 40 |
| abstract_inverted_index.improve | 182 |
| abstract_inverted_index.limited | 18 |
| abstract_inverted_index.million | 229 |
| abstract_inverted_index.optimal | 43 |
| abstract_inverted_index.policy. | 110 |
| abstract_inverted_index.propose | 115 |
| abstract_inverted_index.results | 27, 212 |
| abstract_inverted_index.solving | 29 |
| abstract_inverted_index.success | 224, 246 |
| abstract_inverted_index.target. | 160, 210 |
| abstract_inverted_index.(nearly) | 42 |
| abstract_inverted_index.Executor | 163, 191 |
| abstract_inverted_index.However, | 32 |
| abstract_inverted_index.captures | 192 |
| abstract_inverted_index.contains | 178 |
| abstract_inverted_index.directly | 39 |
| abstract_inverted_index.guidance | 102 |
| abstract_inverted_index.learning | 22, 73 |
| abstract_inverted_index.multiple | 9 |
| abstract_inverted_index.networks | 167 |
| abstract_inverted_index.particle | 234 |
| abstract_inverted_index.partners | 180 |
| abstract_inverted_index.predicts | 97, 143 |
| abstract_inverted_index.problem, | 6 |
| abstract_inverted_index.provides | 75 |
| abstract_inverted_index.requires | 8 |
| abstract_inverted_index.subgraph | 172 |
| abstract_inverted_index.training | 230 |
| abstract_inverted_index.utilizes | 164 |
| abstract_inverted_index.(MAGE-X), | 119 |
| abstract_inverted_index.Commander | 134, 142 |
| abstract_inverted_index.Executor. | 139 |
| abstract_inverted_index.baselines | 220 |
| abstract_inverted_index.challenge | 82 |
| abstract_inverted_index.comprises | 130 |
| abstract_inverted_index.construct | 170 |
| abstract_inverted_index.decompose | 89 |
| abstract_inverted_index.direction | 78 |
| abstract_inverted_index.encourage | 203 |
| abstract_inverted_index.increases | 57 |
| abstract_inverted_index.leverages | 150 |
| abstract_inverted_index.low-level | 95, 137 |
| abstract_inverted_index.primitive | 98 |
| abstract_inverted_index.promising | 26, 77 |
| abstract_inverted_index.quadrotor | 257 |
| abstract_inverted_index.structure | 87 |
| abstract_inverted_index.designated | 200 |
| abstract_inverted_index.efficiency | 252 |
| abstract_inverted_index.high-level | 109, 132 |
| abstract_inverted_index.navigation | 5, 127, 259 |
| abstract_inverted_index.Multi-Agent | 116 |
| abstract_inverted_index.Multi-agent | 20 |
| abstract_inverted_index.appropriate | 158 |
| abstract_inverted_index.complicated | 256 |
| abstract_inverted_index.environment | 63 |
| abstract_inverted_index.exacerbated | 52 |
| abstract_inverted_index.graph-based | 121 |
| abstract_inverted_index.inefficient | 35 |
| abstract_inverted_index.introducing | 84 |
| abstract_inverted_index.multi-agent | 4, 126, 233 |
| abstract_inverted_index.outperforms | 216 |
| abstract_inverted_index.probability | 145 |
| abstract_inverted_index.simulator). | 69 |
| abstract_inverted_index.cooperation. | 183 |
| abstract_inverted_index.distribution | 146 |
| abstract_inverted_index.environments | 235 |
| abstract_inverted_index.hierarchical | 71, 86, 123 |
| abstract_inverted_index.investigates | 2 |
| abstract_inverted_index.relationship | 194 |
| abstract_inverted_index.Additionally, | 184 |
| abstract_inverted_index.reinforcement | 21, 72 |
| abstract_inverted_index.Graph-Enhanced | 117 |
| abstract_inverted_index.Goal-conditioned | 70 |
| abstract_inverted_index.goal-conditioned | 122 |
| abstract_inverted_index.state-of-the-art | 218 |
| abstract_inverted_index.Commander-Executor | 118 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile |