Learning Identifiable Structures Helps Avoid Bias in DNN-based Supervised Causal Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.10883
Causal discovery is a structured prediction task that aims to predict causal relations among variables based on their data samples. Supervised Causal Learning (SCL) is an emerging paradigm in this field. Existing Deep Neural Network (DNN)-based methods commonly adopt the "Node-Edge approach", in which the model first computes an embedding vector for each variable-node, then uses these variable-wise representations to concurrently and independently predict for each directed causal-edge. In this paper, we first show that this architecture has some systematic bias that cannot be mitigated regardless of model size and data size. We then propose SiCL, a DNN-based SCL method that predicts a skeleton matrix together with a v-tensor (a third-order tensor representing the v-structures). According to the Markov Equivalence Class (MEC) theory, both the skeleton and the v-structures are identifiable causal structures under the canonical MEC setting, so predictions about skeleton and v-structures do not suffer from the identifiability limit in causal discovery, thus SiCL can avoid the systematic bias in Node-Edge architecture, and enable consistent estimators for causal discovery. Moreover, SiCL is also equipped with a specially designed pairwise encoder module with a unidirectional attention layer to model both internal and external relationships of pairs of nodes. Experimental results on both synthetic and real-world benchmarks show that SiCL significantly outperforms other DNN-based SCL approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.10883
- https://arxiv.org/pdf/2502.10883
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407686259
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407686259Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.10883Digital Object Identifier
- Title
-
Learning Identifiable Structures Helps Avoid Bias in DNN-based Supervised Causal LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-15Full publication date if available
- Authors
-
Jiaru Zhang, Rui Ding, Qiang Fu, Huang Bojun, Zizhen Deng, Hua Yang, Haibing Guan, Shi Han, Dongmei ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.10883Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.10883Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.10883Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Cognitive psychology, Machine learning, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407686259 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.10883 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.10883 |
| ids.openalex | https://openalex.org/W4407686259 |
| fwci | |
| type | preprint |
| title | Learning Identifiable Structures Helps Avoid Bias in DNN-based Supervised Causal Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11303 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7405999898910522 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Modeling and Causal Inference |
| topics[1].id | https://openalex.org/T10876 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.7300999760627747 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Fault Detection and Control Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5705516934394836 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5141430497169495 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C180747234 |
| concepts[2].level | 1 |
| concepts[2].score | 0.406511515378952 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[2].display_name | Cognitive psychology |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3934089243412018 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C15744967 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3345121741294861 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[4].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5705516934394836 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5141430497169495 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[2].score | 0.406511515378952 |
| keywords[2].display_name | Cognitive psychology |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.3934089243412018 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/psychology |
| keywords[4].score | 0.3345121741294861 |
| keywords[4].display_name | Psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.10883 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.10883 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.10883 |
| locations[1].id | doi:10.48550/arxiv.2502.10883 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.10883 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5017914170 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9273-9093 |
| authorships[0].author.display_name | Jiaru Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Jiaru |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101938131 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3990-7403 |
| authorships[1].author.display_name | Rui Ding |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ding, Rui |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5080695329 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7670-3587 |
| authorships[2].author.display_name | Qiang Fu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fu, Qiang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5034479092 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Huang Bojun |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huang, Bojun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5076649431 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Zizhen Deng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Deng, Zizhen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5052741041 |
| authorships[5].author.orcid | https://orcid.org/0009-0009-4070-0697 |
| authorships[5].author.display_name | Hua Yang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hua, Yang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5049487451 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4714-7400 |
| authorships[6].author.display_name | Haibing Guan |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Guan, Haibing |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5102532315 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Shi Han |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Han, Shi |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100331488 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-9230-2799 |
| authorships[8].author.display_name | Dongmei Zhang |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Zhang, Dongmei |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.10883 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Identifiable Structures Helps Avoid Bias in DNN-based Supervised Causal Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11303 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7405999898910522 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Modeling and Causal Inference |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.10883 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.10883 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.10883 |
| primary_location.id | pmh:oai:arXiv.org:2502.10883 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.10883 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.10883 |
| publication_date | 2025-02-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 96, 102, 107, 177, 184 |
| abstract_inverted_index.(a | 109 |
| abstract_inverted_index.In | 68 |
| abstract_inverted_index.We | 92 |
| abstract_inverted_index.an | 25, 48 |
| abstract_inverted_index.be | 83 |
| abstract_inverted_index.do | 144 |
| abstract_inverted_index.in | 28, 42, 151, 161 |
| abstract_inverted_index.is | 2, 24, 173 |
| abstract_inverted_index.of | 86, 195, 197 |
| abstract_inverted_index.on | 16, 201 |
| abstract_inverted_index.so | 138 |
| abstract_inverted_index.to | 9, 59, 116, 188 |
| abstract_inverted_index.we | 71 |
| abstract_inverted_index.MEC | 136 |
| abstract_inverted_index.SCL | 98, 214 |
| abstract_inverted_index.and | 61, 89, 126, 142, 164, 192, 204 |
| abstract_inverted_index.are | 129 |
| abstract_inverted_index.can | 156 |
| abstract_inverted_index.for | 51, 64, 168 |
| abstract_inverted_index.has | 77 |
| abstract_inverted_index.not | 145 |
| abstract_inverted_index.the | 39, 44, 113, 117, 124, 127, 134, 148, 158 |
| abstract_inverted_index.Deep | 32 |
| abstract_inverted_index.SiCL | 155, 172, 209 |
| abstract_inverted_index.aims | 8 |
| abstract_inverted_index.also | 174 |
| abstract_inverted_index.bias | 80, 160 |
| abstract_inverted_index.both | 123, 190, 202 |
| abstract_inverted_index.data | 18, 90 |
| abstract_inverted_index.each | 52, 65 |
| abstract_inverted_index.from | 147 |
| abstract_inverted_index.show | 73, 207 |
| abstract_inverted_index.size | 88 |
| abstract_inverted_index.some | 78 |
| abstract_inverted_index.task | 6 |
| abstract_inverted_index.that | 7, 74, 81, 100, 208 |
| abstract_inverted_index.then | 54, 93 |
| abstract_inverted_index.this | 29, 69, 75 |
| abstract_inverted_index.thus | 154 |
| abstract_inverted_index.uses | 55 |
| abstract_inverted_index.with | 106, 176, 183 |
| abstract_inverted_index.(MEC) | 121 |
| abstract_inverted_index.(SCL) | 23 |
| abstract_inverted_index.Class | 120 |
| abstract_inverted_index.SiCL, | 95 |
| abstract_inverted_index.about | 140 |
| abstract_inverted_index.adopt | 38 |
| abstract_inverted_index.among | 13 |
| abstract_inverted_index.avoid | 157 |
| abstract_inverted_index.based | 15 |
| abstract_inverted_index.first | 46, 72 |
| abstract_inverted_index.layer | 187 |
| abstract_inverted_index.limit | 150 |
| abstract_inverted_index.model | 45, 87, 189 |
| abstract_inverted_index.other | 212 |
| abstract_inverted_index.pairs | 196 |
| abstract_inverted_index.size. | 91 |
| abstract_inverted_index.their | 17 |
| abstract_inverted_index.these | 56 |
| abstract_inverted_index.under | 133 |
| abstract_inverted_index.which | 43 |
| abstract_inverted_index.Causal | 0, 21 |
| abstract_inverted_index.Markov | 118 |
| abstract_inverted_index.Neural | 33 |
| abstract_inverted_index.cannot | 82 |
| abstract_inverted_index.causal | 11, 131, 152, 169 |
| abstract_inverted_index.enable | 165 |
| abstract_inverted_index.field. | 30 |
| abstract_inverted_index.matrix | 104 |
| abstract_inverted_index.method | 99 |
| abstract_inverted_index.module | 182 |
| abstract_inverted_index.nodes. | 198 |
| abstract_inverted_index.paper, | 70 |
| abstract_inverted_index.suffer | 146 |
| abstract_inverted_index.tensor | 111 |
| abstract_inverted_index.vector | 50 |
| abstract_inverted_index.Network | 34 |
| abstract_inverted_index.encoder | 181 |
| abstract_inverted_index.methods | 36 |
| abstract_inverted_index.predict | 10, 63 |
| abstract_inverted_index.propose | 94 |
| abstract_inverted_index.results | 200 |
| abstract_inverted_index.theory, | 122 |
| abstract_inverted_index.Existing | 31 |
| abstract_inverted_index.Learning | 22 |
| abstract_inverted_index.commonly | 37 |
| abstract_inverted_index.computes | 47 |
| abstract_inverted_index.designed | 179 |
| abstract_inverted_index.directed | 66 |
| abstract_inverted_index.emerging | 26 |
| abstract_inverted_index.equipped | 175 |
| abstract_inverted_index.external | 193 |
| abstract_inverted_index.internal | 191 |
| abstract_inverted_index.pairwise | 180 |
| abstract_inverted_index.paradigm | 27 |
| abstract_inverted_index.predicts | 101 |
| abstract_inverted_index.samples. | 19 |
| abstract_inverted_index.setting, | 137 |
| abstract_inverted_index.skeleton | 103, 125, 141 |
| abstract_inverted_index.together | 105 |
| abstract_inverted_index.v-tensor | 108 |
| abstract_inverted_index.According | 115 |
| abstract_inverted_index.DNN-based | 97, 213 |
| abstract_inverted_index.Moreover, | 171 |
| abstract_inverted_index.Node-Edge | 162 |
| abstract_inverted_index.attention | 186 |
| abstract_inverted_index.canonical | 135 |
| abstract_inverted_index.discovery | 1 |
| abstract_inverted_index.embedding | 49 |
| abstract_inverted_index.mitigated | 84 |
| abstract_inverted_index.relations | 12 |
| abstract_inverted_index.specially | 178 |
| abstract_inverted_index.synthetic | 203 |
| abstract_inverted_index.variables | 14 |
| abstract_inverted_index."Node-Edge | 40 |
| abstract_inverted_index.Supervised | 20 |
| abstract_inverted_index.approach", | 41 |
| abstract_inverted_index.benchmarks | 206 |
| abstract_inverted_index.consistent | 166 |
| abstract_inverted_index.discovery, | 153 |
| abstract_inverted_index.discovery. | 170 |
| abstract_inverted_index.estimators | 167 |
| abstract_inverted_index.prediction | 5 |
| abstract_inverted_index.real-world | 205 |
| abstract_inverted_index.regardless | 85 |
| abstract_inverted_index.structured | 4 |
| abstract_inverted_index.structures | 132 |
| abstract_inverted_index.systematic | 79, 159 |
| abstract_inverted_index.(DNN)-based | 35 |
| abstract_inverted_index.Equivalence | 119 |
| abstract_inverted_index.approaches. | 215 |
| abstract_inverted_index.outperforms | 211 |
| abstract_inverted_index.predictions | 139 |
| abstract_inverted_index.third-order | 110 |
| abstract_inverted_index.Experimental | 199 |
| abstract_inverted_index.architecture | 76 |
| abstract_inverted_index.causal-edge. | 67 |
| abstract_inverted_index.concurrently | 60 |
| abstract_inverted_index.identifiable | 130 |
| abstract_inverted_index.representing | 112 |
| abstract_inverted_index.v-structures | 128, 143 |
| abstract_inverted_index.architecture, | 163 |
| abstract_inverted_index.independently | 62 |
| abstract_inverted_index.relationships | 194 |
| abstract_inverted_index.significantly | 210 |
| abstract_inverted_index.variable-wise | 57 |
| abstract_inverted_index.unidirectional | 185 |
| abstract_inverted_index.v-structures). | 114 |
| abstract_inverted_index.variable-node, | 53 |
| abstract_inverted_index.identifiability | 149 |
| abstract_inverted_index.representations | 58 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |