Learning Latent Dynamics via Invariant Decomposition and (Spatio-)Temporal Transformers Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.12077
We propose a method for learning dynamical systems from high-dimensional empirical data that combines variational autoencoders and (spatio-)temporal attention within a framework designed to enforce certain scientifically-motivated invariances. We focus on the setting in which data are available from multiple different instances of a system whose underlying dynamical model is entirely unknown at the outset. The approach rests on a separation into an instance-specific encoding (capturing initial conditions, constants etc.) and a latent dynamics model that is itself universal across all instances/realizations of the system. The separation is achieved in an automated, data-driven manner and only empirical data are required as inputs to the model. The approach allows effective inference of system behaviour at any continuous time but does not require an explicit neural ODE formulation, which makes it efficient and highly scalable. We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets. The latter investigate learning the dynamics of complex systems based on finite data and show that the proposed approach can outperform state-of-the-art neural-dynamical models. We study also more general inductive bias in the context of transfer to data obtained under entirely novel system interventions. Overall, our results provide a promising new framework for efficiently learning dynamical models from heterogeneous data with potential applications in a wide range of fields including physics, medicine, biology and engineering.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.12077
- https://arxiv.org/pdf/2306.12077
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4381713703
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4381713703Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.12077Digital Object Identifier
- Title
-
Learning Latent Dynamics via Invariant Decomposition and (Spatio-)Temporal TransformersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-21Full publication date if available
- Authors
-
Kai Lagemann, Christian Lagemann, Sach MukherjeeList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.12077Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.12077Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.12077Direct OA link when available
- Concepts
-
Dynamical systems theory, Computer science, Ode, Scalability, Inductive bias, Inference, Artificial intelligence, Synthetic data, Machine learning, Theoretical computer science, Mathematics, Multi-task learning, Physics, Task (project management), Management, Economics, Database, Applied mathematics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4381713703 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.12077 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.12077 |
| ids.openalex | https://openalex.org/W4381713703 |
| fwci | |
| type | preprint |
| title | Learning Latent Dynamics via Invariant Decomposition and (Spatio-)Temporal Transformers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9790999889373779 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| topics[1].id | https://openalex.org/T12814 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9764999747276306 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Gaussian Processes and Bayesian Inference |
| topics[2].id | https://openalex.org/T13650 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9757000207901001 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Computational Physics and Python Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79379906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.688635528087616 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3174497 |
| concepts[0].display_name | Dynamical systems theory |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6881788969039917 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C34862557 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6147249341011047 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q178985 |
| concepts[2].display_name | Ode |
| concepts[3].id | https://openalex.org/C48044578 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5486024022102356 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[3].display_name | Scalability |
| concepts[4].id | https://openalex.org/C197352929 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5466348528862 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1074074 |
| concepts[4].display_name | Inductive bias |
| concepts[5].id | https://openalex.org/C2776214188 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5424315929412842 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[5].display_name | Inference |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5170853137969971 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C160920958 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4365387558937073 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7662746 |
| concepts[7].display_name | Synthetic data |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.37464725971221924 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C80444323 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34420448541641235 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[9].display_name | Theoretical computer science |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.16400614380836487 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C28006648 |
| concepts[11].level | 3 |
| concepts[11].score | 0.13855260610580444 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q6934509 |
| concepts[11].display_name | Multi-task learning |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09137362241744995 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C2780451532 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[13].display_name | Task (project management) |
| concepts[14].id | https://openalex.org/C187736073 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[14].display_name | Management |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C77088390 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[16].display_name | Database |
| concepts[17].id | https://openalex.org/C28826006 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[17].display_name | Applied mathematics |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/dynamical-systems-theory |
| keywords[0].score | 0.688635528087616 |
| keywords[0].display_name | Dynamical systems theory |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6881788969039917 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/ode |
| keywords[2].score | 0.6147249341011047 |
| keywords[2].display_name | Ode |
| keywords[3].id | https://openalex.org/keywords/scalability |
| keywords[3].score | 0.5486024022102356 |
| keywords[3].display_name | Scalability |
| keywords[4].id | https://openalex.org/keywords/inductive-bias |
| keywords[4].score | 0.5466348528862 |
| keywords[4].display_name | Inductive bias |
| keywords[5].id | https://openalex.org/keywords/inference |
| keywords[5].score | 0.5424315929412842 |
| keywords[5].display_name | Inference |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5170853137969971 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/synthetic-data |
| keywords[7].score | 0.4365387558937073 |
| keywords[7].display_name | Synthetic data |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.37464725971221924 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[9].score | 0.34420448541641235 |
| keywords[9].display_name | Theoretical computer science |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.16400614380836487 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/multi-task-learning |
| keywords[11].score | 0.13855260610580444 |
| keywords[11].display_name | Multi-task learning |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.09137362241744995 |
| keywords[12].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.12077 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.12077 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.12077 |
| locations[1].id | doi:10.48550/arxiv.2306.12077 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.12077 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5015971884 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8485-7682 |
| authorships[0].author.display_name | Kai Lagemann |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lagemann, Kai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085520597 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1150-4987 |
| authorships[1].author.display_name | Christian Lagemann |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lagemann, Christian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5112866063 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sach Mukherjee |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mukherjee, Sach |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.12077 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Latent Dynamics via Invariant Decomposition and (Spatio-)Temporal Transformers |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9790999889373779 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| related_works | https://openalex.org/W2371448224, https://openalex.org/W3134495997, https://openalex.org/W2363680170, https://openalex.org/W2376428685, https://openalex.org/W4256082577, https://openalex.org/W625783435, https://openalex.org/W2048742619, https://openalex.org/W2384641672, https://openalex.org/W2381724853, https://openalex.org/W2379984741 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.12077 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.12077 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.12077 |
| primary_location.id | pmh:oai:arXiv.org:2306.12077 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.12077 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.12077 |
| publication_date | 2023-06-21 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 20, 43, 59, 71, 196, 212 |
| abstract_inverted_index.We | 0, 28, 133, 172 |
| abstract_inverted_index.an | 62, 90, 121 |
| abstract_inverted_index.as | 100 |
| abstract_inverted_index.at | 52, 113 |
| abstract_inverted_index.in | 33, 89, 179, 211 |
| abstract_inverted_index.is | 49, 76, 87 |
| abstract_inverted_index.it | 128 |
| abstract_inverted_index.of | 42, 82, 110, 154, 182, 215 |
| abstract_inverted_index.on | 30, 58, 143, 158 |
| abstract_inverted_index.to | 23, 102, 184 |
| abstract_inverted_index.ODE | 124 |
| abstract_inverted_index.The | 55, 85, 105, 148 |
| abstract_inverted_index.all | 80 |
| abstract_inverted_index.and | 16, 70, 94, 130, 140, 145, 161, 221 |
| abstract_inverted_index.any | 114 |
| abstract_inverted_index.are | 36, 98 |
| abstract_inverted_index.but | 117 |
| abstract_inverted_index.can | 167 |
| abstract_inverted_index.for | 4, 200 |
| abstract_inverted_index.new | 198 |
| abstract_inverted_index.not | 119 |
| abstract_inverted_index.our | 193 |
| abstract_inverted_index.the | 31, 53, 83, 103, 152, 164, 180 |
| abstract_inverted_index.also | 174 |
| abstract_inverted_index.bias | 178 |
| abstract_inverted_index.data | 11, 35, 97, 160, 185, 207 |
| abstract_inverted_index.does | 118 |
| abstract_inverted_index.from | 8, 38, 205 |
| abstract_inverted_index.into | 61 |
| abstract_inverted_index.more | 175 |
| abstract_inverted_index.only | 95 |
| abstract_inverted_index.show | 162 |
| abstract_inverted_index.that | 12, 75, 163 |
| abstract_inverted_index.time | 116 |
| abstract_inverted_index.wide | 213 |
| abstract_inverted_index.with | 208 |
| abstract_inverted_index.based | 157 |
| abstract_inverted_index.etc.) | 69 |
| abstract_inverted_index.focus | 29 |
| abstract_inverted_index.makes | 127 |
| abstract_inverted_index.model | 48, 74 |
| abstract_inverted_index.novel | 189 |
| abstract_inverted_index.range | 214 |
| abstract_inverted_index.rests | 57 |
| abstract_inverted_index.study | 134, 173 |
| abstract_inverted_index.under | 187 |
| abstract_inverted_index.which | 34, 126 |
| abstract_inverted_index.whose | 45 |
| abstract_inverted_index.across | 79 |
| abstract_inverted_index.allows | 107 |
| abstract_inverted_index.fields | 216 |
| abstract_inverted_index.finite | 159 |
| abstract_inverted_index.highly | 131 |
| abstract_inverted_index.inputs | 101 |
| abstract_inverted_index.itself | 77 |
| abstract_inverted_index.latent | 72 |
| abstract_inverted_index.latter | 149 |
| abstract_inverted_index.manner | 93 |
| abstract_inverted_index.method | 3 |
| abstract_inverted_index.model. | 104 |
| abstract_inverted_index.models | 204 |
| abstract_inverted_index.neural | 123 |
| abstract_inverted_index.simple | 137 |
| abstract_inverted_index.system | 44, 111, 190 |
| abstract_inverted_index.within | 19 |
| abstract_inverted_index.biology | 220 |
| abstract_inverted_index.certain | 25 |
| abstract_inverted_index.complex | 155 |
| abstract_inverted_index.context | 181 |
| abstract_inverted_index.enforce | 24 |
| abstract_inverted_index.general | 176 |
| abstract_inverted_index.initial | 66 |
| abstract_inverted_index.models. | 171 |
| abstract_inverted_index.outset. | 54 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.provide | 195 |
| abstract_inverted_index.require | 120 |
| abstract_inverted_index.results | 194 |
| abstract_inverted_index.setting | 32 |
| abstract_inverted_index.system. | 84 |
| abstract_inverted_index.systems | 7, 156 |
| abstract_inverted_index.through | 136 |
| abstract_inverted_index.unknown | 51 |
| abstract_inverted_index.Overall, | 192 |
| abstract_inverted_index.achieved | 88 |
| abstract_inverted_index.analyses | 139 |
| abstract_inverted_index.approach | 56, 106, 166 |
| abstract_inverted_index.combines | 13 |
| abstract_inverted_index.designed | 22 |
| abstract_inverted_index.dynamics | 73, 153 |
| abstract_inverted_index.encoding | 64 |
| abstract_inverted_index.entirely | 50, 188 |
| abstract_inverted_index.explicit | 122 |
| abstract_inverted_index.learning | 5, 151, 202 |
| abstract_inverted_index.multiple | 39 |
| abstract_inverted_index.obtained | 186 |
| abstract_inverted_index.physics, | 218 |
| abstract_inverted_index.proposed | 165 |
| abstract_inverted_index.required | 99 |
| abstract_inverted_index.transfer | 183 |
| abstract_inverted_index.attention | 18 |
| abstract_inverted_index.available | 37 |
| abstract_inverted_index.behaviour | 112, 135 |
| abstract_inverted_index.constants | 68 |
| abstract_inverted_index.datasets. | 147 |
| abstract_inverted_index.different | 40 |
| abstract_inverted_index.dynamical | 6, 47, 203 |
| abstract_inverted_index.effective | 108 |
| abstract_inverted_index.efficient | 129 |
| abstract_inverted_index.empirical | 10, 96 |
| abstract_inverted_index.extensive | 141 |
| abstract_inverted_index.framework | 21, 199 |
| abstract_inverted_index.including | 217 |
| abstract_inverted_index.inductive | 177 |
| abstract_inverted_index.inference | 109 |
| abstract_inverted_index.instances | 41 |
| abstract_inverted_index.medicine, | 219 |
| abstract_inverted_index.potential | 209 |
| abstract_inverted_index.promising | 197 |
| abstract_inverted_index.scalable. | 132 |
| abstract_inverted_index.synthetic | 144 |
| abstract_inverted_index.universal | 78 |
| abstract_inverted_index.(capturing | 65 |
| abstract_inverted_index.automated, | 91 |
| abstract_inverted_index.continuous | 115 |
| abstract_inverted_index.outperform | 168 |
| abstract_inverted_index.real-world | 146 |
| abstract_inverted_index.separation | 60, 86 |
| abstract_inverted_index.underlying | 46 |
| abstract_inverted_index.conditions, | 67 |
| abstract_inverted_index.data-driven | 92 |
| abstract_inverted_index.efficiently | 201 |
| abstract_inverted_index.experiments | 142 |
| abstract_inverted_index.investigate | 150 |
| abstract_inverted_index.theoretical | 138 |
| abstract_inverted_index.variational | 14 |
| abstract_inverted_index.applications | 210 |
| abstract_inverted_index.autoencoders | 15 |
| abstract_inverted_index.engineering. | 222 |
| abstract_inverted_index.formulation, | 125 |
| abstract_inverted_index.invariances. | 27 |
| abstract_inverted_index.heterogeneous | 206 |
| abstract_inverted_index.interventions. | 191 |
| abstract_inverted_index.high-dimensional | 9 |
| abstract_inverted_index.neural-dynamical | 170 |
| abstract_inverted_index.state-of-the-art | 169 |
| abstract_inverted_index.(spatio-)temporal | 17 |
| abstract_inverted_index.instance-specific | 63 |
| abstract_inverted_index.instances/realizations | 81 |
| abstract_inverted_index.scientifically-motivated | 26 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |