Learning Models For Corrupted Multi-Dimensional Data: Fundamental Limits And Algorithms Article Swipe
Developing machine learning models for unstructured multi-dimensional datasets such as datasets with unreliable labels and noisy multi-dimensional signals with or without missing information have becoming a central necessity. We are not always fortunate enough to get noise-free datasets for developing classification and representation models. Though there is a number of techniques available to deal with noisy datasets, these methods do not exploit the multi-dimensional structures of the signals, which could be used to improve the overall classification and representation performance of the model.\nIn this thesis, we develop a Kronecker-structure (K-S) subspace model that exploits the multi-dimensional structure of the signal. First, we study the classification performance of K-S subspace models in two asymptotic regimes when the signal dimensions go to infinity and when the noise power tends to zero. We characterize the misclassification probability in terms of diversity order and we drive an exact expression for the diversity order. We further derive a tighter bound on misclassification probability in terms of pairwise geometry of the subspaces. The proposed scheme is optimal in most of the signal dimension regimes except in one regime where the signal dimension is less than twice the subspace dimension, however, hitting such a signal dimension regime is very rare in practice. We empirically show that the classification performance of K-S subspace models agrees with the diversity order analysis. We also develop an algorithm, Kronecker- Structured Learning of Discriminative Dictionaries (K-SLD2), for fast and compact K-S subspace learning for better classification and representation of multidimensional signals. We show that the K-SLD2 algorithm balances compact signal representation and good classification performance on synthetic and real-world datasets. Next, we develop a scheme to detect whether a given multi-dimensional signal with missing information lies on a given K-S subspace. We find that under some mild incoherence conditions we must observe ��(��1 log ��1) number of rows and ��(��2 log ��2) number of columns in order to detect the K-S subspace.\nIn order to account for unreliable labels in datasets we present Nonlinear, Noise- aware, Quasiclustering (NNAQC), a method for learning deep convolutional networks from datasets corrupted by unknown label noise. We append a nonlinear noise model to a standard convolutional network, which is learned in tandem with the parameters of the network. Further, we train the network using a loss function that encourages the clustering of training images. We argue that the non-linear noise model, while not rigorous as a probabilistic model, results in a more effective denoising operator during backpropagation. We evaluate the performance of NNAQC on artificially injected label noise to MNIST, CIFAR-10, CIFAR-100, and ImageNet datasets and on a large-scale Clothing1M dataset with inherent label noise. We show that on all these datasets, NNAQC provides significantly improved classification performance over the state of the art and is robust to the amount of label noise and the training samples.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://digitalcommons.wayne.edu/oa_dissertations/2166
- https://digitalcommons.wayne.edu/oa_dissertations/2166
- OA Status
- green
- References
- 81
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2968635615
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2968635615Canonical identifier for this work in OpenAlex
- Title
-
Learning Models For Corrupted Multi-Dimensional Data: Fundamental Limits And AlgorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Ishan JindalList of authors in order
- Landing page
-
https://digitalcommons.wayne.edu/oa_dissertations/2166Publisher landing page
- PDF URL
-
https://digitalcommons.wayne.edu/oa_dissertations/2166Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://digitalcommons.wayne.edu/oa_dissertations/2166Direct OA link when available
- Concepts
-
Computer science, Algorithm, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
81Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2968635615 |
|---|---|
| doi | |
| ids.mag | 2968635615 |
| ids.openalex | https://openalex.org/W2968635615 |
| fwci | 0.0 |
| type | article |
| title | Learning Models For Corrupted Multi-Dimensional Data: Fundamental Limits And Algorithms |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12072 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Algorithms |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5685213208198547 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5585454702377319 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.37619489431381226 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5685213208198547 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.5585454702377319 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.37619489431381226 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:digitalcommons.wayne.edu:oa_dissertations-3165 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4377196394 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | DigitalCommons - WayneState (Wayne State University) |
| locations[0].source.host_organization | https://openalex.org/I185443292 |
| locations[0].source.host_organization_name | Wayne State University |
| locations[0].source.host_organization_lineage | https://openalex.org/I185443292 |
| locations[0].license | |
| locations[0].pdf_url | https://digitalcommons.wayne.edu/oa_dissertations/2166 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | dissertation |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | Wayne State University Dissertations |
| locations[0].landing_page_url | https://digitalcommons.wayne.edu/oa_dissertations/2166 |
| locations[1].id | mag:2968635615 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://digitalcommons.wayne.edu/cgi/viewcontent.cgi?article=3165&context=oa_dissertations |
| authorships[0].author.id | https://openalex.org/A5077046363 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8854-4189 |
| authorships[0].author.display_name | Ishan Jindal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ishan Jindal |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://digitalcommons.wayne.edu/oa_dissertations/2166 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Models For Corrupted Multi-Dimensional Data: Fundamental Limits And Algorithms |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T12072 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Algorithms |
| related_works | https://openalex.org/W2293935805, https://openalex.org/W2160014662, https://openalex.org/W324568108, https://openalex.org/W2348866936, https://openalex.org/W64418311, https://openalex.org/W2348025993, https://openalex.org/W1497378715, https://openalex.org/W3143185276, https://openalex.org/W2779748380, https://openalex.org/W2060822309, https://openalex.org/W3010189727, https://openalex.org/W2785577567, https://openalex.org/W2126017757, https://openalex.org/W3208085809, https://openalex.org/W2118976878, https://openalex.org/W2964034664, https://openalex.org/W2475098969, https://openalex.org/W2939169317, https://openalex.org/W2894142921, https://openalex.org/W3196439808 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:digitalcommons.wayne.edu:oa_dissertations-3165 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196394 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | DigitalCommons - WayneState (Wayne State University) |
| best_oa_location.source.host_organization | https://openalex.org/I185443292 |
| best_oa_location.source.host_organization_name | Wayne State University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I185443292 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://digitalcommons.wayne.edu/oa_dissertations/2166 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | dissertation |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Wayne State University Dissertations |
| best_oa_location.landing_page_url | https://digitalcommons.wayne.edu/oa_dissertations/2166 |
| primary_location.id | pmh:oai:digitalcommons.wayne.edu:oa_dissertations-3165 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4377196394 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | DigitalCommons - WayneState (Wayne State University) |
| primary_location.source.host_organization | https://openalex.org/I185443292 |
| primary_location.source.host_organization_name | Wayne State University |
| primary_location.source.host_organization_lineage | https://openalex.org/I185443292 |
| primary_location.license | |
| primary_location.pdf_url | https://digitalcommons.wayne.edu/oa_dissertations/2166 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | dissertation |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | Wayne State University Dissertations |
| primary_location.landing_page_url | https://digitalcommons.wayne.edu/oa_dissertations/2166 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W1574714376, https://openalex.org/W2947553656, https://openalex.org/W2093829413, https://openalex.org/W2039708501, https://openalex.org/W1855879034, https://openalex.org/W2017539681, https://openalex.org/W1963882359, https://openalex.org/W2611328865, https://openalex.org/W1963932623, https://openalex.org/W2157785665, https://openalex.org/W2010753958, https://openalex.org/W2088254198, https://openalex.org/W2158771018, https://openalex.org/W2032768707, https://openalex.org/W2125874614, https://openalex.org/W2592335154, https://openalex.org/W2336589871, https://openalex.org/W2103193999, https://openalex.org/W2964292098, https://openalex.org/W2027805700, https://openalex.org/W2077813311, https://openalex.org/W2126017757, https://openalex.org/W1972959470, https://openalex.org/W2963758027, https://openalex.org/W2577784528, https://openalex.org/W2118900175, https://openalex.org/W2927652189, https://openalex.org/W2742947407, https://openalex.org/W3118608800, https://openalex.org/W2752971446, https://openalex.org/W2102251918, https://openalex.org/W1861492603, https://openalex.org/W2034841618, https://openalex.org/W2063509716, https://openalex.org/W316798226, https://openalex.org/W2164001739, https://openalex.org/W2107820823, https://openalex.org/W2761908665, https://openalex.org/W1973890885, https://openalex.org/W123339444, https://openalex.org/W3099438410, https://openalex.org/W2952509110, https://openalex.org/W2194775991, https://openalex.org/W2899703365, https://openalex.org/W2782464351, https://openalex.org/W2160547390, https://openalex.org/W2136504847, https://openalex.org/W2153663612, https://openalex.org/W2155413294, https://openalex.org/W2013912476, https://openalex.org/W2149197198, https://openalex.org/W2100495367, https://openalex.org/W2964234160, https://openalex.org/W1989076816, https://openalex.org/W2964274690, https://openalex.org/W2964273174, https://openalex.org/W2112796928, https://openalex.org/W2074950806, https://openalex.org/W1975128126, https://openalex.org/W2160551639, https://openalex.org/W2129766733, https://openalex.org/W753012316, https://openalex.org/W1992405901, https://openalex.org/W2102628473, https://openalex.org/W2084716923, https://openalex.org/W2131556788, https://openalex.org/W1666146316, https://openalex.org/W2095705004, https://openalex.org/W2137983211, https://openalex.org/W2964155802, https://openalex.org/W2071524685, https://openalex.org/W2095906131, https://openalex.org/W3100570787, https://openalex.org/W2145607950, https://openalex.org/W2963888082, https://openalex.org/W2964149787, https://openalex.org/W1569512666, https://openalex.org/W2117130368, https://openalex.org/W2024165284, https://openalex.org/W2115429828, https://openalex.org/W2155893237 |
| referenced_works_count | 81 |
| abstract_inverted_index.a | 25, 47, 87, 152, 196, 271, 276, 285, 335, 351, 356, 377, 398, 403, 430 |
| abstract_inverted_index.We | 28, 129, 149, 205, 222, 249, 289, 349, 387, 410, 438 |
| abstract_inverted_index.an | 142, 225 |
| abstract_inverted_index.as | 9, 397 |
| abstract_inverted_index.be | 70 |
| abstract_inverted_index.by | 345 |
| abstract_inverted_index.do | 59 |
| abstract_inverted_index.go | 118 |
| abstract_inverted_index.in | 110, 134, 158, 171, 179, 203, 313, 326, 363, 402 |
| abstract_inverted_index.is | 46, 169, 186, 200, 361, 458 |
| abstract_inverted_index.of | 49, 65, 80, 97, 106, 136, 160, 163, 173, 212, 230, 246, 304, 311, 368, 384, 414, 454, 463 |
| abstract_inverted_index.on | 155, 263, 284, 416, 429, 441 |
| abstract_inverted_index.or | 19 |
| abstract_inverted_index.to | 34, 52, 72, 119, 127, 273, 315, 321, 355, 421, 460 |
| abstract_inverted_index.we | 85, 101, 140, 269, 297, 328, 372 |
| abstract_inverted_index.K-S | 107, 213, 238, 287, 318 |
| abstract_inverted_index.The | 166 |
| abstract_inverted_index.all | 442 |
| abstract_inverted_index.and | 14, 41, 77, 121, 139, 236, 244, 259, 265, 306, 425, 428, 457, 466 |
| abstract_inverted_index.are | 29 |
| abstract_inverted_index.art | 456 |
| abstract_inverted_index.for | 4, 38, 145, 234, 241, 323, 337 |
| abstract_inverted_index.get | 35 |
| abstract_inverted_index.log | 301, 308 |
| abstract_inverted_index.not | 30, 60, 395 |
| abstract_inverted_index.one | 180 |
| abstract_inverted_index.the | 62, 66, 74, 81, 94, 98, 103, 115, 123, 131, 146, 164, 174, 183, 190, 209, 218, 252, 317, 366, 369, 374, 382, 390, 412, 452, 455, 461, 467 |
| abstract_inverted_index.two | 111 |
| abstract_inverted_index.also | 223 |
| abstract_inverted_index.deal | 53 |
| abstract_inverted_index.deep | 339 |
| abstract_inverted_index.fast | 235 |
| abstract_inverted_index.find | 290 |
| abstract_inverted_index.from | 342 |
| abstract_inverted_index.good | 260 |
| abstract_inverted_index.have | 23 |
| abstract_inverted_index.less | 187 |
| abstract_inverted_index.lies | 283 |
| abstract_inverted_index.loss | 378 |
| abstract_inverted_index.mild | 294 |
| abstract_inverted_index.more | 404 |
| abstract_inverted_index.most | 172 |
| abstract_inverted_index.must | 298 |
| abstract_inverted_index.over | 451 |
| abstract_inverted_index.rare | 202 |
| abstract_inverted_index.rows | 305 |
| abstract_inverted_index.show | 207, 250, 439 |
| abstract_inverted_index.some | 293 |
| abstract_inverted_index.such | 8, 195 |
| abstract_inverted_index.than | 188 |
| abstract_inverted_index.that | 92, 208, 251, 291, 380, 389, 440 |
| abstract_inverted_index.this | 83 |
| abstract_inverted_index.used | 71 |
| abstract_inverted_index.very | 201 |
| abstract_inverted_index.when | 114, 122 |
| abstract_inverted_index.with | 11, 18, 54, 217, 280, 365, 434 |
| abstract_inverted_index.(K-S) | 89 |
| abstract_inverted_index.NNAQC | 415, 445 |
| abstract_inverted_index.Next, | 268 |
| abstract_inverted_index.argue | 388 |
| abstract_inverted_index.bound | 154 |
| abstract_inverted_index.could | 69 |
| abstract_inverted_index.drive | 141 |
| abstract_inverted_index.exact | 143 |
| abstract_inverted_index.given | 277, 286 |
| abstract_inverted_index.label | 347, 419, 436, 464 |
| abstract_inverted_index.model | 91, 354 |
| abstract_inverted_index.noise | 124, 353, 392, 420, 465 |
| abstract_inverted_index.noisy | 15, 55 |
| abstract_inverted_index.order | 138, 220, 314, 320 |
| abstract_inverted_index.power | 125 |
| abstract_inverted_index.state | 453 |
| abstract_inverted_index.study | 102 |
| abstract_inverted_index.tends | 126 |
| abstract_inverted_index.terms | 135, 159 |
| abstract_inverted_index.there | 45 |
| abstract_inverted_index.these | 57, 443 |
| abstract_inverted_index.train | 373 |
| abstract_inverted_index.twice | 189 |
| abstract_inverted_index.under | 292 |
| abstract_inverted_index.using | 376 |
| abstract_inverted_index.where | 182 |
| abstract_inverted_index.which | 68, 360 |
| abstract_inverted_index.while | 394 |
| abstract_inverted_index.zero. | 128 |
| abstract_inverted_index.First, | 100 |
| abstract_inverted_index.K-SLD2 | 253 |
| abstract_inverted_index.MNIST, | 422 |
| abstract_inverted_index.Noise- | 331 |
| abstract_inverted_index.Though | 44 |
| abstract_inverted_index.agrees | 216 |
| abstract_inverted_index.always | 31 |
| abstract_inverted_index.amount | 462 |
| abstract_inverted_index.append | 350 |
| abstract_inverted_index.aware, | 332 |
| abstract_inverted_index.better | 242 |
| abstract_inverted_index.derive | 151 |
| abstract_inverted_index.detect | 274, 316 |
| abstract_inverted_index.during | 408 |
| abstract_inverted_index.enough | 33 |
| abstract_inverted_index.except | 178 |
| abstract_inverted_index.labels | 13, 325 |
| abstract_inverted_index.method | 336 |
| abstract_inverted_index.model, | 393, 400 |
| abstract_inverted_index.models | 3, 109, 215 |
| abstract_inverted_index.noise. | 348, 437 |
| abstract_inverted_index.number | 48, 303, 310 |
| abstract_inverted_index.order. | 148 |
| abstract_inverted_index.regime | 181, 199 |
| abstract_inverted_index.robust | 459 |
| abstract_inverted_index.scheme | 168, 272 |
| abstract_inverted_index.signal | 116, 175, 184, 197, 257, 279 |
| abstract_inverted_index.tandem | 364 |
| abstract_inverted_index.account | 322 |
| abstract_inverted_index.central | 26 |
| abstract_inverted_index.columns | 312 |
| abstract_inverted_index.compact | 237, 256 |
| abstract_inverted_index.dataset | 433 |
| abstract_inverted_index.develop | 86, 224, 270 |
| abstract_inverted_index.exploit | 61 |
| abstract_inverted_index.further | 150 |
| abstract_inverted_index.hitting | 194 |
| abstract_inverted_index.images. | 386 |
| abstract_inverted_index.improve | 73 |
| abstract_inverted_index.learned | 362 |
| abstract_inverted_index.machine | 1 |
| abstract_inverted_index.methods | 58 |
| abstract_inverted_index.missing | 21, 281 |
| abstract_inverted_index.models. | 43 |
| abstract_inverted_index.network | 375 |
| abstract_inverted_index.observe | 299 |
| abstract_inverted_index.optimal | 170 |
| abstract_inverted_index.overall | 75 |
| abstract_inverted_index.present | 329 |
| abstract_inverted_index.regimes | 113, 177 |
| abstract_inverted_index.results | 401 |
| abstract_inverted_index.signal. | 99 |
| abstract_inverted_index.signals | 17 |
| abstract_inverted_index.thesis, | 84 |
| abstract_inverted_index.tighter | 153 |
| abstract_inverted_index.unknown | 346 |
| abstract_inverted_index.whether | 275 |
| abstract_inverted_index.without | 20 |
| abstract_inverted_index.(NNAQC), | 334 |
| abstract_inverted_index.Further, | 371 |
| abstract_inverted_index.ImageNet | 426 |
| abstract_inverted_index.Learning | 229 |
| abstract_inverted_index.balances | 255 |
| abstract_inverted_index.becoming | 24 |
| abstract_inverted_index.datasets | 7, 10, 37, 327, 343, 427 |
| abstract_inverted_index.evaluate | 411 |
| abstract_inverted_index.exploits | 93 |
| abstract_inverted_index.function | 379 |
| abstract_inverted_index.geometry | 162 |
| abstract_inverted_index.however, | 193 |
| abstract_inverted_index.improved | 448 |
| abstract_inverted_index.infinity | 120 |
| abstract_inverted_index.inherent | 435 |
| abstract_inverted_index.injected | 418 |
| abstract_inverted_index.learning | 2, 240, 338 |
| abstract_inverted_index.network, | 359 |
| abstract_inverted_index.network. | 370 |
| abstract_inverted_index.networks | 341 |
| abstract_inverted_index.operator | 407 |
| abstract_inverted_index.pairwise | 161 |
| abstract_inverted_index.proposed | 167 |
| abstract_inverted_index.provides | 446 |
| abstract_inverted_index.rigorous | 396 |
| abstract_inverted_index.samples. | 469 |
| abstract_inverted_index.signals, | 67 |
| abstract_inverted_index.signals. | 248 |
| abstract_inverted_index.standard | 357 |
| abstract_inverted_index.subspace | 90, 108, 191, 214, 239 |
| abstract_inverted_index.training | 385, 468 |
| abstract_inverted_index.��1) | 302 |
| abstract_inverted_index.��2) | 309 |
| abstract_inverted_index.(K-SLD2), | 233 |
| abstract_inverted_index.CIFAR-10, | 423 |
| abstract_inverted_index.algorithm | 254 |
| abstract_inverted_index.analysis. | 221 |
| abstract_inverted_index.available | 51 |
| abstract_inverted_index.corrupted | 344 |
| abstract_inverted_index.datasets, | 56, 444 |
| abstract_inverted_index.datasets. | 267 |
| abstract_inverted_index.denoising | 406 |
| abstract_inverted_index.dimension | 176, 185, 198 |
| abstract_inverted_index.diversity | 137, 147, 219 |
| abstract_inverted_index.effective | 405 |
| abstract_inverted_index.fortunate | 32 |
| abstract_inverted_index.nonlinear | 352 |
| abstract_inverted_index.practice. | 204 |
| abstract_inverted_index.structure | 96 |
| abstract_inverted_index.subspace. | 288 |
| abstract_inverted_index.synthetic | 264 |
| abstract_inverted_index.CIFAR-100, | 424 |
| abstract_inverted_index.Clothing1M | 432 |
| abstract_inverted_index.Developing | 0 |
| abstract_inverted_index.Kronecker- | 227 |
| abstract_inverted_index.Nonlinear, | 330 |
| abstract_inverted_index.Structured | 228 |
| abstract_inverted_index.algorithm, | 226 |
| abstract_inverted_index.asymptotic | 112 |
| abstract_inverted_index.clustering | 383 |
| abstract_inverted_index.conditions | 296 |
| abstract_inverted_index.developing | 39 |
| abstract_inverted_index.dimension, | 192 |
| abstract_inverted_index.dimensions | 117 |
| abstract_inverted_index.encourages | 381 |
| abstract_inverted_index.expression | 144 |
| abstract_inverted_index.model.\nIn | 82 |
| abstract_inverted_index.necessity. | 27 |
| abstract_inverted_index.noise-free | 36 |
| abstract_inverted_index.non-linear | 391 |
| abstract_inverted_index.parameters | 367 |
| abstract_inverted_index.real-world | 266 |
| abstract_inverted_index.structures | 64 |
| abstract_inverted_index.subspaces. | 165 |
| abstract_inverted_index.techniques | 50 |
| abstract_inverted_index.unreliable | 12, 324 |
| abstract_inverted_index.empirically | 206 |
| abstract_inverted_index.incoherence | 295 |
| abstract_inverted_index.information | 22, 282 |
| abstract_inverted_index.large-scale | 431 |
| abstract_inverted_index.performance | 79, 105, 211, 262, 413, 450 |
| abstract_inverted_index.probability | 133, 157 |
| abstract_inverted_index.Dictionaries | 232 |
| abstract_inverted_index.artificially | 417 |
| abstract_inverted_index.characterize | 130 |
| abstract_inverted_index.unstructured | 5 |
| abstract_inverted_index.convolutional | 340, 358 |
| abstract_inverted_index.probabilistic | 399 |
| abstract_inverted_index.significantly | 447 |
| abstract_inverted_index.subspace.\nIn | 319 |
| abstract_inverted_index.Discriminative | 231 |
| abstract_inverted_index.classification | 40, 76, 104, 210, 243, 261, 449 |
| abstract_inverted_index.representation | 42, 78, 245, 258 |
| abstract_inverted_index.��(��1 | 300 |
| abstract_inverted_index.��(��2 | 307 |
| abstract_inverted_index.Quasiclustering | 333 |
| abstract_inverted_index.backpropagation. | 409 |
| abstract_inverted_index.multidimensional | 247 |
| abstract_inverted_index.misclassification | 132, 156 |
| abstract_inverted_index.multi-dimensional | 6, 16, 63, 95, 278 |
| abstract_inverted_index.Kronecker-structure | 88 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5077046363 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.08722915 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |