Learning Optimal Multigrid Smoothers via Neural Networks Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1137/21m1430030
Multigrid methods are one of the most efficient techniques for solving large sparse linear systems arising from partial differential equations (PDEs) and graph Laplacians from machine learning applications. One of the key components of multigrid is smoothing, which aims at reducing high-frequency errors on each grid level. However, finding optimal smoothing algorithms is problem-dependent and can impose challenges for many problems. In this paper, we propose an efficient adaptive framework for learning optimized smoothers from operator stencils in the form of convolutional neural networks (CNNs). Here, the CNNs are trained on small-scale problems from a given type of PDEs based on a supervised loss function derived from multigrid convergence theories and can be applied to large-scale problems of the same class of PDEs. Numerical results on anisotropic rotated Laplacian problems and variable coefficient diffusion problems demonstrate improved convergence rates and solution time compared with classical hand-crafted relaxation methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1137/21m1430030
- OA Status
- green
- Cited By
- 25
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297200229
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297200229Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1137/21m1430030Digital Object Identifier
- Title
-
Learning Optimal Multigrid Smoothers via Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-24Full publication date if available
- Authors
-
Ru Huang, Ruipeng Li, Yuanzhe XiList of authors in order
- Landing page
-
https://doi.org/10.1137/21m1430030Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/2205730Direct OA link when available
- Concepts
-
Multigrid method, Smoothing, Partial differential equation, Mathematics, Mathematical optimization, Artificial neural network, Relaxation (psychology), Convergence (economics), Applied mathematics, Computer science, Algorithm, Artificial intelligence, Mathematical analysis, Economic growth, Statistics, Economics, Psychology, Social psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
25Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 4, 2023: 6, 2022: 2, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297200229 |
|---|---|
| doi | https://doi.org/10.1137/21m1430030 |
| ids.doi | https://doi.org/10.1137/21m1430030 |
| ids.openalex | https://openalex.org/W4297200229 |
| fwci | 6.08654143 |
| type | article |
| title | Learning Optimal Multigrid Smoothers via Neural Networks |
| awards[0].id | https://openalex.org/G7805918262 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | OAC-2003720 |
| awards[0].funder_display_name | National Science Foundation |
| biblio.issue | 3 |
| biblio.volume | 45 |
| biblio.last_page | S225 |
| biblio.first_page | S199 |
| topics[0].id | https://openalex.org/T10339 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Advanced Numerical Methods in Computational Mathematics |
| topics[1].id | https://openalex.org/T12100 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Mathematical Modeling in Engineering |
| topics[2].id | https://openalex.org/T11206 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9973999857902527 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Model Reduction and Neural Networks |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C137119250 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9174149036407471 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1413101 |
| concepts[0].display_name | Multigrid method |
| concepts[1].id | https://openalex.org/C3770464 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6234323978424072 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q775963 |
| concepts[1].display_name | Smoothing |
| concepts[2].id | https://openalex.org/C93779851 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5853923559188843 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q271977 |
| concepts[2].display_name | Partial differential equation |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5512736439704895 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C126255220 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5324496030807495 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[4].display_name | Mathematical optimization |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45675405859947205 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C2776029896 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45383667945861816 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3935810 |
| concepts[6].display_name | Relaxation (psychology) |
| concepts[7].id | https://openalex.org/C2777303404 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41735750436782837 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[7].display_name | Convergence (economics) |
| concepts[8].id | https://openalex.org/C28826006 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3908683657646179 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[8].display_name | Applied mathematics |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.39068150520324707 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3874318301677704 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.23728257417678833 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.09500738978385925 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| concepts[13].id | https://openalex.org/C50522688 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[13].display_name | Economic growth |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C15744967 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[16].display_name | Psychology |
| concepts[17].id | https://openalex.org/C77805123 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[17].display_name | Social psychology |
| keywords[0].id | https://openalex.org/keywords/multigrid-method |
| keywords[0].score | 0.9174149036407471 |
| keywords[0].display_name | Multigrid method |
| keywords[1].id | https://openalex.org/keywords/smoothing |
| keywords[1].score | 0.6234323978424072 |
| keywords[1].display_name | Smoothing |
| keywords[2].id | https://openalex.org/keywords/partial-differential-equation |
| keywords[2].score | 0.5853923559188843 |
| keywords[2].display_name | Partial differential equation |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.5512736439704895 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[4].score | 0.5324496030807495 |
| keywords[4].display_name | Mathematical optimization |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.45675405859947205 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/relaxation |
| keywords[6].score | 0.45383667945861816 |
| keywords[6].display_name | Relaxation (psychology) |
| keywords[7].id | https://openalex.org/keywords/convergence |
| keywords[7].score | 0.41735750436782837 |
| keywords[7].display_name | Convergence (economics) |
| keywords[8].id | https://openalex.org/keywords/applied-mathematics |
| keywords[8].score | 0.3908683657646179 |
| keywords[8].display_name | Applied mathematics |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.39068150520324707 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.3874318301677704 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.23728257417678833 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[12].score | 0.09500738978385925 |
| keywords[12].display_name | Mathematical analysis |
| language | en |
| locations[0].id | doi:10.1137/21m1430030 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S165512578 |
| locations[0].source.issn | 1064-8275, 1095-7197 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1064-8275 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SIAM Journal on Scientific Computing |
| locations[0].source.host_organization | https://openalex.org/P4310320508 |
| locations[0].source.host_organization_name | Society for Industrial and Applied Mathematics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320508 |
| locations[0].source.host_organization_lineage_names | Society for Industrial and Applied Mathematics |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | SIAM Journal on Scientific Computing |
| locations[0].landing_page_url | https://doi.org/10.1137/21m1430030 |
| locations[1].id | pmh:oai:osti.gov:2205730 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/2205730 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5012603707 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7545-0987 |
| authorships[0].author.display_name | Ru Huang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[0].affiliations[0].raw_affiliation_string | Emory Univ., Atlanta, GA (United States) |
| authorships[0].institutions[0].id | https://openalex.org/I150468666 |
| authorships[0].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Emory University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Ru |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Emory Univ., Atlanta, GA (United States) |
| authorships[1].author.id | https://openalex.org/A5101509235 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2802-5763 |
| authorships[1].author.display_name | Ruipeng Li |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1282311441 |
| authorships[1].affiliations[0].raw_affiliation_string | Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
| authorships[1].institutions[0].id | https://openalex.org/I1282311441 |
| authorships[1].institutions[0].ror | https://ror.org/041nk4h53 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1282311441, https://openalex.org/I1330989302, https://openalex.org/I198811213, https://openalex.org/I4210138311 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Lawrence Livermore National Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Ruipeng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
| authorships[2].author.id | https://openalex.org/A5056635728 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0361-0931 |
| authorships[2].author.display_name | Yuanzhe Xi |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[2].affiliations[0].raw_affiliation_string | Emory Univ., Atlanta, GA (United States) |
| authorships[2].institutions[0].id | https://openalex.org/I150468666 |
| authorships[2].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Emory University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Xi, Yuanzhe |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Emory Univ., Atlanta, GA (United States) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/2205730 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Optimal Multigrid Smoothers via Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10339 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Advanced Numerical Methods in Computational Mathematics |
| related_works | https://openalex.org/W2077078424, https://openalex.org/W2182328658, https://openalex.org/W1519938374, https://openalex.org/W84272617, https://openalex.org/W613282331, https://openalex.org/W1758121264, https://openalex.org/W2383355899, https://openalex.org/W1501940787, https://openalex.org/W1524119935, https://openalex.org/W2161759000 |
| cited_by_count | 25 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:2205730 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/2205730 |
| primary_location.id | doi:10.1137/21m1430030 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S165512578 |
| primary_location.source.issn | 1064-8275, 1095-7197 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1064-8275 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SIAM Journal on Scientific Computing |
| primary_location.source.host_organization | https://openalex.org/P4310320508 |
| primary_location.source.host_organization_name | Society for Industrial and Applied Mathematics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320508 |
| primary_location.source.host_organization_lineage_names | Society for Industrial and Applied Mathematics |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | SIAM Journal on Scientific Computing |
| primary_location.landing_page_url | https://doi.org/10.1137/21m1430030 |
| publication_date | 2022-08-24 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2005073368, https://openalex.org/W2165630134, https://openalex.org/W2770250658, https://openalex.org/W2070913801, https://openalex.org/W2075536798, https://openalex.org/W2106088594, https://openalex.org/W2962745910, https://openalex.org/W1987573671, https://openalex.org/W2012349161, https://openalex.org/W2001371530, https://openalex.org/W2078687549, https://openalex.org/W2038516134, https://openalex.org/W2025614228, https://openalex.org/W2803629276, https://openalex.org/W2912389156, https://openalex.org/W2158985775, https://openalex.org/W3008063637, https://openalex.org/W2884714875, https://openalex.org/W2791363721, https://openalex.org/W2130641059, https://openalex.org/W1901129140, https://openalex.org/W1506342804, https://openalex.org/W2749028154, https://openalex.org/W2963289862, https://openalex.org/W4211094263, https://openalex.org/W2945672665, https://openalex.org/W2033340616, https://openalex.org/W2963889991, https://openalex.org/W2963626582, https://openalex.org/W3102569296, https://openalex.org/W3100626142, https://openalex.org/W2014552949 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 94, 101 |
| abstract_inverted_index.In | 61 |
| abstract_inverted_index.an | 66 |
| abstract_inverted_index.at | 39 |
| abstract_inverted_index.be | 112 |
| abstract_inverted_index.in | 77 |
| abstract_inverted_index.is | 35, 52 |
| abstract_inverted_index.of | 4, 29, 33, 80, 97, 117, 121 |
| abstract_inverted_index.on | 43, 90, 100, 125 |
| abstract_inverted_index.to | 114 |
| abstract_inverted_index.we | 64 |
| abstract_inverted_index.One | 28 |
| abstract_inverted_index.and | 21, 54, 110, 130, 139 |
| abstract_inverted_index.are | 2, 88 |
| abstract_inverted_index.can | 55, 111 |
| abstract_inverted_index.for | 9, 58, 70 |
| abstract_inverted_index.key | 31 |
| abstract_inverted_index.one | 3 |
| abstract_inverted_index.the | 5, 30, 78, 86, 118 |
| abstract_inverted_index.CNNs | 87 |
| abstract_inverted_index.PDEs | 98 |
| abstract_inverted_index.aims | 38 |
| abstract_inverted_index.each | 44 |
| abstract_inverted_index.form | 79 |
| abstract_inverted_index.from | 16, 24, 74, 93, 106 |
| abstract_inverted_index.grid | 45 |
| abstract_inverted_index.loss | 103 |
| abstract_inverted_index.many | 59 |
| abstract_inverted_index.most | 6 |
| abstract_inverted_index.same | 119 |
| abstract_inverted_index.this | 62 |
| abstract_inverted_index.time | 141 |
| abstract_inverted_index.type | 96 |
| abstract_inverted_index.with | 143 |
| abstract_inverted_index.Here, | 85 |
| abstract_inverted_index.PDEs. | 122 |
| abstract_inverted_index.based | 99 |
| abstract_inverted_index.class | 120 |
| abstract_inverted_index.given | 95 |
| abstract_inverted_index.graph | 22 |
| abstract_inverted_index.large | 11 |
| abstract_inverted_index.rates | 138 |
| abstract_inverted_index.which | 37 |
| abstract_inverted_index.(PDEs) | 20 |
| abstract_inverted_index.errors | 42 |
| abstract_inverted_index.impose | 56 |
| abstract_inverted_index.level. | 46 |
| abstract_inverted_index.linear | 13 |
| abstract_inverted_index.neural | 82 |
| abstract_inverted_index.paper, | 63 |
| abstract_inverted_index.sparse | 12 |
| abstract_inverted_index.(CNNs). | 84 |
| abstract_inverted_index.applied | 113 |
| abstract_inverted_index.arising | 15 |
| abstract_inverted_index.derived | 105 |
| abstract_inverted_index.finding | 48 |
| abstract_inverted_index.machine | 25 |
| abstract_inverted_index.methods | 1 |
| abstract_inverted_index.optimal | 49 |
| abstract_inverted_index.partial | 17 |
| abstract_inverted_index.propose | 65 |
| abstract_inverted_index.results | 124 |
| abstract_inverted_index.rotated | 127 |
| abstract_inverted_index.solving | 10 |
| abstract_inverted_index.systems | 14 |
| abstract_inverted_index.trained | 89 |
| abstract_inverted_index.However, | 47 |
| abstract_inverted_index.adaptive | 68 |
| abstract_inverted_index.compared | 142 |
| abstract_inverted_index.function | 104 |
| abstract_inverted_index.improved | 136 |
| abstract_inverted_index.learning | 26, 71 |
| abstract_inverted_index.methods. | 147 |
| abstract_inverted_index.networks | 83 |
| abstract_inverted_index.operator | 75 |
| abstract_inverted_index.problems | 92, 116, 129, 134 |
| abstract_inverted_index.reducing | 40 |
| abstract_inverted_index.solution | 140 |
| abstract_inverted_index.stencils | 76 |
| abstract_inverted_index.theories | 109 |
| abstract_inverted_index.variable | 131 |
| abstract_inverted_index.Laplacian | 128 |
| abstract_inverted_index.Multigrid | 0 |
| abstract_inverted_index.Numerical | 123 |
| abstract_inverted_index.classical | 144 |
| abstract_inverted_index.diffusion | 133 |
| abstract_inverted_index.efficient | 7, 67 |
| abstract_inverted_index.equations | 19 |
| abstract_inverted_index.framework | 69 |
| abstract_inverted_index.multigrid | 34, 107 |
| abstract_inverted_index.optimized | 72 |
| abstract_inverted_index.problems. | 60 |
| abstract_inverted_index.smoothers | 73 |
| abstract_inverted_index.smoothing | 50 |
| abstract_inverted_index.Laplacians | 23 |
| abstract_inverted_index.algorithms | 51 |
| abstract_inverted_index.challenges | 57 |
| abstract_inverted_index.components | 32 |
| abstract_inverted_index.relaxation | 146 |
| abstract_inverted_index.smoothing, | 36 |
| abstract_inverted_index.supervised | 102 |
| abstract_inverted_index.techniques | 8 |
| abstract_inverted_index.anisotropic | 126 |
| abstract_inverted_index.coefficient | 132 |
| abstract_inverted_index.convergence | 108, 137 |
| abstract_inverted_index.demonstrate | 135 |
| abstract_inverted_index.large-scale | 115 |
| abstract_inverted_index.small-scale | 91 |
| abstract_inverted_index.differential | 18 |
| abstract_inverted_index.hand-crafted | 145 |
| abstract_inverted_index.applications. | 27 |
| abstract_inverted_index.convolutional | 81 |
| abstract_inverted_index.high-frequency | 41 |
| abstract_inverted_index.problem-dependent | 53 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.95447432 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |