Learning optimal multigrid smoothers via neural networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2102.12071
Multigrid methods are one of the most efficient techniques for solving linear systems arising from Partial Differential Equations (PDEs) and graph Laplacians from machine learning applications. One of the key components of multigrid is smoothing, which aims at reducing high-frequency errors on each grid level. However, finding optimal smoothing algorithms is problem-dependent and can impose challenges for many problems. In this paper, we propose an efficient adaptive framework for learning optimized smoothers from operator stencils in the form of convolutional neural networks (CNNs). The CNNs are trained on small-scale problems from a given type of PDEs based on a supervised loss function derived from multigrid convergence theories, and can be applied to large-scale problems of the same class of PDEs. Numerical results on anisotropic rotated Laplacian problems demonstrate improved convergence rates and solution time compared with classical hand-crafted relaxation methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2102.12071
- https://arxiv.org/pdf/2102.12071
- OA Status
- green
- Cited By
- 3
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3131157216
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3131157216Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2102.12071Digital Object Identifier
- Title
-
Learning optimal multigrid smoothers via neural networksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-02-24Full publication date if available
- Authors
-
Ru Huang, Ruipeng Li, Yuanzhe XiList of authors in order
- Landing page
-
https://arxiv.org/abs/2102.12071Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2102.12071Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2102.12071Direct OA link when available
- Concepts
-
Multigrid method, Smoothing, Partial differential equation, Computer science, Mathematical optimization, Convolutional neural network, Artificial neural network, Relaxation (psychology), Convergence (economics), Laplace operator, Applied mathematics, Algorithm, Mathematics, Artificial intelligence, Mathematical analysis, Social psychology, Computer vision, Economic growth, Psychology, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3131157216 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2102.12071 |
| ids.doi | https://doi.org/10.48550/arxiv.2102.12071 |
| ids.mag | 3131157216 |
| ids.openalex | https://openalex.org/W3131157216 |
| fwci | |
| type | preprint |
| title | Learning optimal multigrid smoothers via neural networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10339 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Advanced Numerical Methods in Computational Mathematics |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| topics[2].id | https://openalex.org/T12100 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Advanced Mathematical Modeling in Engineering |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C137119250 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9423061609268188 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1413101 |
| concepts[0].display_name | Multigrid method |
| concepts[1].id | https://openalex.org/C3770464 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6611024141311646 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q775963 |
| concepts[1].display_name | Smoothing |
| concepts[2].id | https://openalex.org/C93779851 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5904183387756348 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q271977 |
| concepts[2].display_name | Partial differential equation |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5686025023460388 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C126255220 |
| concepts[4].level | 1 |
| concepts[4].score | 0.557403028011322 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[4].display_name | Mathematical optimization |
| concepts[5].id | https://openalex.org/C81363708 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4768741726875305 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[5].display_name | Convolutional neural network |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47103482484817505 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C2776029896 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4700549840927124 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3935810 |
| concepts[7].display_name | Relaxation (psychology) |
| concepts[8].id | https://openalex.org/C2777303404 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4665254056453705 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[8].display_name | Convergence (economics) |
| concepts[9].id | https://openalex.org/C165700671 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43565064668655396 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q203484 |
| concepts[9].display_name | Laplace operator |
| concepts[10].id | https://openalex.org/C28826006 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3667418956756592 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[10].display_name | Applied mathematics |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.36493051052093506 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3308389186859131 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3046451807022095 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.07441794872283936 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C77805123 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[15].display_name | Social psychology |
| concepts[16].id | https://openalex.org/C31972630 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[16].display_name | Computer vision |
| concepts[17].id | https://openalex.org/C50522688 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[17].display_name | Economic growth |
| concepts[18].id | https://openalex.org/C15744967 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[18].display_name | Psychology |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/multigrid-method |
| keywords[0].score | 0.9423061609268188 |
| keywords[0].display_name | Multigrid method |
| keywords[1].id | https://openalex.org/keywords/smoothing |
| keywords[1].score | 0.6611024141311646 |
| keywords[1].display_name | Smoothing |
| keywords[2].id | https://openalex.org/keywords/partial-differential-equation |
| keywords[2].score | 0.5904183387756348 |
| keywords[2].display_name | Partial differential equation |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5686025023460388 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[4].score | 0.557403028011322 |
| keywords[4].display_name | Mathematical optimization |
| keywords[5].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[5].score | 0.4768741726875305 |
| keywords[5].display_name | Convolutional neural network |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.47103482484817505 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/relaxation |
| keywords[7].score | 0.4700549840927124 |
| keywords[7].display_name | Relaxation (psychology) |
| keywords[8].id | https://openalex.org/keywords/convergence |
| keywords[8].score | 0.4665254056453705 |
| keywords[8].display_name | Convergence (economics) |
| keywords[9].id | https://openalex.org/keywords/laplace-operator |
| keywords[9].score | 0.43565064668655396 |
| keywords[9].display_name | Laplace operator |
| keywords[10].id | https://openalex.org/keywords/applied-mathematics |
| keywords[10].score | 0.3667418956756592 |
| keywords[10].display_name | Applied mathematics |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.36493051052093506 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.3308389186859131 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.3046451807022095 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[14].score | 0.07441794872283936 |
| keywords[14].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2102.12071 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2102.12071 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2102.12071 |
| locations[1].id | doi:10.48550/arxiv.2102.12071 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2102.12071 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5012603707 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7545-0987 |
| authorships[0].author.display_name | Ru Huang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[0].affiliations[0].raw_affiliation_string | Emory University |
| authorships[0].institutions[0].id | https://openalex.org/I150468666 |
| authorships[0].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Emory University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ru Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Emory University |
| authorships[1].author.id | https://openalex.org/A5101509235 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2802-5763 |
| authorships[1].author.display_name | Ruipeng Li |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1282311441 |
| authorships[1].affiliations[0].raw_affiliation_string | Lawrence Livermore National Laboratory |
| authorships[1].institutions[0].id | https://openalex.org/I1282311441 |
| authorships[1].institutions[0].ror | https://ror.org/041nk4h53 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1282311441, https://openalex.org/I1330989302, https://openalex.org/I198811213, https://openalex.org/I4210138311 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Lawrence Livermore National Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ruipeng Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Lawrence Livermore National Laboratory |
| authorships[2].author.id | https://openalex.org/A5056635728 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0361-0931 |
| authorships[2].author.display_name | Yuanzhe Xi |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[2].affiliations[0].raw_affiliation_string | Emory University |
| authorships[2].institutions[0].id | https://openalex.org/I150468666 |
| authorships[2].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Emory University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yuanzhe Xi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Emory University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2102.12071 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning optimal multigrid smoothers via neural networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10339 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Advanced Numerical Methods in Computational Mathematics |
| related_works | https://openalex.org/W2077078424, https://openalex.org/W2182328658, https://openalex.org/W1519938374, https://openalex.org/W84272617, https://openalex.org/W613282331, https://openalex.org/W2383355899, https://openalex.org/W2623401972, https://openalex.org/W1524119935, https://openalex.org/W2155760131, https://openalex.org/W2161759000 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2102.12071 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2102.12071 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2102.12071 |
| primary_location.id | pmh:oai:arXiv.org:2102.12071 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2102.12071 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2102.12071 |
| publication_date | 2021-02-24 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1530872699, https://openalex.org/W2075536798, https://openalex.org/W2001371530, https://openalex.org/W2025614228, https://openalex.org/W2770250658, https://openalex.org/W1901129140, https://openalex.org/W3101260193, https://openalex.org/W2803629276, https://openalex.org/W2070913801, https://openalex.org/W2014552949, https://openalex.org/W3100626142, https://openalex.org/W2766207105, https://openalex.org/W2033340616, https://openalex.org/W2963289862, https://openalex.org/W2963626582, https://openalex.org/W3034265363, https://openalex.org/W2912389156, https://openalex.org/W2978639647, https://openalex.org/W2749028154, https://openalex.org/W2963889991, https://openalex.org/W2542140269, https://openalex.org/W3046607066, https://openalex.org/W2165630134, https://openalex.org/W2342261098, https://openalex.org/W2909891600, https://openalex.org/W2788421913, https://openalex.org/W2767916420, https://openalex.org/W2106088594, https://openalex.org/W2995001833, https://openalex.org/W2918495682, https://openalex.org/W1506342804, https://openalex.org/W2884714875, https://openalex.org/W3008063637, https://openalex.org/W2962745910, https://openalex.org/W2005073368, https://openalex.org/W2078687549 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 91, 98 |
| abstract_inverted_index.In | 59 |
| abstract_inverted_index.an | 64 |
| abstract_inverted_index.at | 37 |
| abstract_inverted_index.be | 109 |
| abstract_inverted_index.in | 75 |
| abstract_inverted_index.is | 33, 50 |
| abstract_inverted_index.of | 4, 27, 31, 78, 94, 114, 118 |
| abstract_inverted_index.on | 41, 87, 97, 122 |
| abstract_inverted_index.to | 111 |
| abstract_inverted_index.we | 62 |
| abstract_inverted_index.One | 26 |
| abstract_inverted_index.The | 83 |
| abstract_inverted_index.and | 19, 52, 107, 131 |
| abstract_inverted_index.are | 2, 85 |
| abstract_inverted_index.can | 53, 108 |
| abstract_inverted_index.for | 9, 56, 68 |
| abstract_inverted_index.key | 29 |
| abstract_inverted_index.one | 3 |
| abstract_inverted_index.the | 5, 28, 76, 115 |
| abstract_inverted_index.CNNs | 84 |
| abstract_inverted_index.PDEs | 95 |
| abstract_inverted_index.aims | 36 |
| abstract_inverted_index.each | 42 |
| abstract_inverted_index.form | 77 |
| abstract_inverted_index.from | 14, 22, 72, 90, 103 |
| abstract_inverted_index.grid | 43 |
| abstract_inverted_index.loss | 100 |
| abstract_inverted_index.many | 57 |
| abstract_inverted_index.most | 6 |
| abstract_inverted_index.same | 116 |
| abstract_inverted_index.this | 60 |
| abstract_inverted_index.time | 133 |
| abstract_inverted_index.type | 93 |
| abstract_inverted_index.with | 135 |
| abstract_inverted_index.PDEs. | 119 |
| abstract_inverted_index.based | 96 |
| abstract_inverted_index.class | 117 |
| abstract_inverted_index.given | 92 |
| abstract_inverted_index.graph | 20 |
| abstract_inverted_index.rates | 130 |
| abstract_inverted_index.which | 35 |
| abstract_inverted_index.(PDEs) | 18 |
| abstract_inverted_index.errors | 40 |
| abstract_inverted_index.impose | 54 |
| abstract_inverted_index.level. | 44 |
| abstract_inverted_index.linear | 11 |
| abstract_inverted_index.neural | 80 |
| abstract_inverted_index.paper, | 61 |
| abstract_inverted_index.(CNNs). | 82 |
| abstract_inverted_index.Partial | 15 |
| abstract_inverted_index.applied | 110 |
| abstract_inverted_index.arising | 13 |
| abstract_inverted_index.derived | 102 |
| abstract_inverted_index.finding | 46 |
| abstract_inverted_index.machine | 23 |
| abstract_inverted_index.methods | 1 |
| abstract_inverted_index.optimal | 47 |
| abstract_inverted_index.propose | 63 |
| abstract_inverted_index.results | 121 |
| abstract_inverted_index.rotated | 124 |
| abstract_inverted_index.solving | 10 |
| abstract_inverted_index.systems | 12 |
| abstract_inverted_index.trained | 86 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.adaptive | 66 |
| abstract_inverted_index.compared | 134 |
| abstract_inverted_index.function | 101 |
| abstract_inverted_index.improved | 128 |
| abstract_inverted_index.learning | 24, 69 |
| abstract_inverted_index.methods. | 139 |
| abstract_inverted_index.networks | 81 |
| abstract_inverted_index.operator | 73 |
| abstract_inverted_index.problems | 89, 113, 126 |
| abstract_inverted_index.reducing | 38 |
| abstract_inverted_index.solution | 132 |
| abstract_inverted_index.stencils | 74 |
| abstract_inverted_index.Equations | 17 |
| abstract_inverted_index.Laplacian | 125 |
| abstract_inverted_index.Multigrid | 0 |
| abstract_inverted_index.Numerical | 120 |
| abstract_inverted_index.classical | 136 |
| abstract_inverted_index.efficient | 7, 65 |
| abstract_inverted_index.framework | 67 |
| abstract_inverted_index.multigrid | 32, 104 |
| abstract_inverted_index.optimized | 70 |
| abstract_inverted_index.problems. | 58 |
| abstract_inverted_index.smoothers | 71 |
| abstract_inverted_index.smoothing | 48 |
| abstract_inverted_index.theories, | 106 |
| abstract_inverted_index.Laplacians | 21 |
| abstract_inverted_index.algorithms | 49 |
| abstract_inverted_index.challenges | 55 |
| abstract_inverted_index.components | 30 |
| abstract_inverted_index.relaxation | 138 |
| abstract_inverted_index.smoothing, | 34 |
| abstract_inverted_index.supervised | 99 |
| abstract_inverted_index.techniques | 8 |
| abstract_inverted_index.anisotropic | 123 |
| abstract_inverted_index.convergence | 105, 129 |
| abstract_inverted_index.demonstrate | 127 |
| abstract_inverted_index.large-scale | 112 |
| abstract_inverted_index.small-scale | 88 |
| abstract_inverted_index.Differential | 16 |
| abstract_inverted_index.hand-crafted | 137 |
| abstract_inverted_index.applications. | 25 |
| abstract_inverted_index.convolutional | 79 |
| abstract_inverted_index.high-frequency | 39 |
| abstract_inverted_index.problem-dependent | 51 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |