Learning Power Systems Waveform Incipient Patterns Through Few-Shot Meta-Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/oajpe.2024.3477630
Incipient faults (IFs) are abnormal states before the permanent failure of power equipment. IFs are typically transient and generally do not trigger the operation of relay protection devices. This leads the difficulty in capturing IF data from waveform monitoring or recording devices. However, traditional detection methods cannot achieve satisfactory performance when faced with limited data. Besides, some signal analysis methods based on waveform conversion to images cannot obtain understandable image data and cannot analyze both current and voltage signals simultaneously. To resolve these problems, a few-shot meta-learning framework for incipient fault detection (FSMLF-IFD) is proposed in this paper. For better data processing, a waveform image conversion strategy is proposed to convert waveforms into understandable images from the time domain perspective. Then, an adaptive image fusion strategy is developed to concurrently analyze voltage and current images. Next, at the meta-training stage, an adaptability-enhancing weighting initialization strategy is constructed to address the data differences between the meta-training stage and IF detection stage. Finally, an IF detection model based on convolutional neural networks (CNNs) is obtained through the fine-tuning process. In the numerical results, the IF detection and classification accuracy of FSMLF-IFD reached 0.9720 and 0.9840 based on simulation and field IF data, which validates the effectiveness of the proposed method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/oajpe.2024.3477630
- OA Status
- gold
- Cited By
- 4
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403294870
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403294870Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/oajpe.2024.3477630Digital Object Identifier
- Title
-
Learning Power Systems Waveform Incipient Patterns Through Few-Shot Meta-LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Lixian Shi, Qiushi Cui, Yang Weng, Yigong Zhang, Shilong Chen, Jian Li, Wenyuan LiList of authors in order
- Landing page
-
https://doi.org/10.1109/oajpe.2024.3477630Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/oajpe.2024.3477630Direct OA link when available
- Concepts
-
Waveform, Power (physics), Shot (pellet), Meta learning (computer science), Computer science, Artificial intelligence, Telecommunications, Physics, Economics, Materials science, Task (project management), Management, Metallurgy, Radar, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403294870 |
|---|---|
| doi | https://doi.org/10.1109/oajpe.2024.3477630 |
| ids.doi | https://doi.org/10.1109/oajpe.2024.3477630 |
| ids.openalex | https://openalex.org/W4403294870 |
| fwci | 1.47667389 |
| type | article |
| title | Learning Power Systems Waveform Incipient Patterns Through Few-Shot Meta-Learning |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 545 |
| biblio.first_page | 532 |
| topics[0].id | https://openalex.org/T14276 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9429000020027161 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Power Systems and Technologies |
| is_xpac | False |
| apc_list.value | 1350 |
| apc_list.currency | USD |
| apc_list.value_usd | 1350 |
| apc_paid.value | 1350 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1350 |
| concepts[0].id | https://openalex.org/C197424946 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7708327770233154 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1165717 |
| concepts[0].display_name | Waveform |
| concepts[1].id | https://openalex.org/C163258240 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5521214008331299 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[1].display_name | Power (physics) |
| concepts[2].id | https://openalex.org/C2778344882 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5248855948448181 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[2].display_name | Shot (pellet) |
| concepts[3].id | https://openalex.org/C2781002164 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4954429864883423 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6822311 |
| concepts[3].display_name | Meta learning (computer science) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4166341722011566 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.36361777782440186 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C76155785 |
| concepts[6].level | 1 |
| concepts[6].score | 0.1113530695438385 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[6].display_name | Telecommunications |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1044667661190033 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C162324750 |
| concepts[8].level | 0 |
| concepts[8].score | 0.09363701939582825 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[8].display_name | Economics |
| concepts[9].id | https://openalex.org/C192562407 |
| concepts[9].level | 0 |
| concepts[9].score | 0.07518637180328369 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[9].display_name | Materials science |
| concepts[10].id | https://openalex.org/C2780451532 |
| concepts[10].level | 2 |
| concepts[10].score | 0.061786144971847534 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[10].display_name | Task (project management) |
| concepts[11].id | https://openalex.org/C187736073 |
| concepts[11].level | 1 |
| concepts[11].score | 0.04802617430686951 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[11].display_name | Management |
| concepts[12].id | https://openalex.org/C191897082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[12].display_name | Metallurgy |
| concepts[13].id | https://openalex.org/C554190296 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[13].display_name | Radar |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/waveform |
| keywords[0].score | 0.7708327770233154 |
| keywords[0].display_name | Waveform |
| keywords[1].id | https://openalex.org/keywords/power |
| keywords[1].score | 0.5521214008331299 |
| keywords[1].display_name | Power (physics) |
| keywords[2].id | https://openalex.org/keywords/shot |
| keywords[2].score | 0.5248855948448181 |
| keywords[2].display_name | Shot (pellet) |
| keywords[3].id | https://openalex.org/keywords/meta-learning |
| keywords[3].score | 0.4954429864883423 |
| keywords[3].display_name | Meta learning (computer science) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4166341722011566 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.36361777782440186 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/telecommunications |
| keywords[6].score | 0.1113530695438385 |
| keywords[6].display_name | Telecommunications |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.1044667661190033 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/economics |
| keywords[8].score | 0.09363701939582825 |
| keywords[8].display_name | Economics |
| keywords[9].id | https://openalex.org/keywords/materials-science |
| keywords[9].score | 0.07518637180328369 |
| keywords[9].display_name | Materials science |
| keywords[10].id | https://openalex.org/keywords/task |
| keywords[10].score | 0.061786144971847534 |
| keywords[10].display_name | Task (project management) |
| keywords[11].id | https://openalex.org/keywords/management |
| keywords[11].score | 0.04802617430686951 |
| keywords[11].display_name | Management |
| language | en |
| locations[0].id | doi:10.1109/oajpe.2024.3477630 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210177381 |
| locations[0].source.issn | 2687-7910 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2687-7910 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Open Access Journal of Power and Energy |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Open Access Journal of Power and Energy |
| locations[0].landing_page_url | https://doi.org/10.1109/oajpe.2024.3477630 |
| locations[1].id | pmh:oai:doaj.org/article:70389b81df6648f4b3ef8f2eed2bb07a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Open Access Journal of Power and Energy, Vol 11, Pp 532-545 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/70389b81df6648f4b3ef8f2eed2bb07a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5043074460 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1846-2399 |
| authorships[0].author.display_name | Lixian Shi |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical Engineering, Chongqing University, Chongqing, China |
| authorships[0].institutions[0].id | https://openalex.org/I158842170 |
| authorships[0].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chongqing University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lixian SHI |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical Engineering, Chongqing University, Chongqing, China |
| authorships[1].author.id | https://openalex.org/A5062263640 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3471-3936 |
| authorships[1].author.display_name | Qiushi Cui |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical Engineering, Chongqing University, Chongqing, China |
| authorships[1].institutions[0].id | https://openalex.org/I158842170 |
| authorships[1].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chongqing University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qiushi Cui |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Electrical Engineering, Chongqing University, Chongqing, China |
| authorships[2].author.id | https://openalex.org/A5021106309 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5267-1303 |
| authorships[2].author.display_name | Yang Weng |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I55732556 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA |
| authorships[2].institutions[0].id | https://openalex.org/I55732556 |
| authorships[2].institutions[0].ror | https://ror.org/03efmqc40 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I55732556 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Arizona State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yang Weng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA |
| authorships[3].author.id | https://openalex.org/A5048872055 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6412-6599 |
| authorships[3].author.display_name | Yigong Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical Engineering, Chongqing University, Chongqing, China |
| authorships[3].institutions[0].id | https://openalex.org/I158842170 |
| authorships[3].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chongqing University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yigong Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical Engineering, Chongqing University, Chongqing, China |
| authorships[4].author.id | https://openalex.org/A5022896242 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2889-403X |
| authorships[4].author.display_name | Shilong Chen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I10660446 |
| authorships[4].affiliations[0].raw_affiliation_string | Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming, China |
| authorships[4].institutions[0].id | https://openalex.org/I10660446 |
| authorships[4].institutions[0].ror | https://ror.org/00xyeez13 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I10660446 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Kunming University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shilong Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming, China |
| authorships[5].author.id | https://openalex.org/A5108050345 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5239-9469 |
| authorships[5].author.display_name | Jian Li |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Electrical Engineering, Chongqing University, Chongqing, China |
| authorships[5].institutions[0].id | https://openalex.org/I158842170 |
| authorships[5].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chongqing University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jian Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Electrical Engineering, Chongqing University, Chongqing, China |
| authorships[6].author.id | https://openalex.org/A5085165889 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5113-7280 |
| authorships[6].author.display_name | Wenyuan Li |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Electrical Engineering, Chongqing University, Chongqing, China |
| authorships[6].institutions[0].id | https://openalex.org/I158842170 |
| authorships[6].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Chongqing University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Wenyuan Li |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Electrical Engineering, Chongqing University, Chongqing, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/oajpe.2024.3477630 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Power Systems Waveform Incipient Patterns Through Few-Shot Meta-Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14276 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9429000020027161 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Power Systems and Technologies |
| related_works | https://openalex.org/W2074502265, https://openalex.org/W4214877189, https://openalex.org/W2773965352, https://openalex.org/W2381179799, https://openalex.org/W2980279061, https://openalex.org/W2334685461, https://openalex.org/W1974895211, https://openalex.org/W2129841057, https://openalex.org/W3040712279, https://openalex.org/W2176409448 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/oajpe.2024.3477630 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210177381 |
| best_oa_location.source.issn | 2687-7910 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2687-7910 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Open Access Journal of Power and Energy |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Open Access Journal of Power and Energy |
| best_oa_location.landing_page_url | https://doi.org/10.1109/oajpe.2024.3477630 |
| primary_location.id | doi:10.1109/oajpe.2024.3477630 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210177381 |
| primary_location.source.issn | 2687-7910 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2687-7910 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Open Access Journal of Power and Energy |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Open Access Journal of Power and Energy |
| primary_location.landing_page_url | https://doi.org/10.1109/oajpe.2024.3477630 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3007212929, https://openalex.org/W3129428683, https://openalex.org/W4321020941, https://openalex.org/W3008914102, https://openalex.org/W4213440325, https://openalex.org/W2954316022, https://openalex.org/W4312540444, https://openalex.org/W4224228060, https://openalex.org/W2945351333, https://openalex.org/W2022261067, https://openalex.org/W4386065209, https://openalex.org/W3035847183, https://openalex.org/W4213010207, https://openalex.org/W4322707212, https://openalex.org/W2095736798, https://openalex.org/W2099170502, https://openalex.org/W2103061149, https://openalex.org/W3024140202, https://openalex.org/W4214747296, https://openalex.org/W3128946928, https://openalex.org/W2901358399, https://openalex.org/W2812096095, https://openalex.org/W3056908629, https://openalex.org/W3043895269, https://openalex.org/W3169993218, https://openalex.org/W4304118899, https://openalex.org/W3216575363, https://openalex.org/W4290713946, https://openalex.org/W4210554433, https://openalex.org/W2896165750, https://openalex.org/W3200647619, https://openalex.org/W3173582509, https://openalex.org/W1971829806, https://openalex.org/W2344779444, https://openalex.org/W6736057607, https://openalex.org/W2963157523, https://openalex.org/W2029652003, https://openalex.org/W2073337195, https://openalex.org/W1535423010, https://openalex.org/W4312719933 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 84, 102 |
| abstract_inverted_index.IF | 34, 157, 162, 182, 198 |
| abstract_inverted_index.In | 177 |
| abstract_inverted_index.To | 80 |
| abstract_inverted_index.an | 121, 140, 161 |
| abstract_inverted_index.at | 136 |
| abstract_inverted_index.do | 19 |
| abstract_inverted_index.in | 32, 95 |
| abstract_inverted_index.is | 93, 107, 126, 145, 171 |
| abstract_inverted_index.of | 10, 24, 187, 204 |
| abstract_inverted_index.on | 61, 166, 194 |
| abstract_inverted_index.or | 39 |
| abstract_inverted_index.to | 64, 109, 128, 147 |
| abstract_inverted_index.For | 98 |
| abstract_inverted_index.IFs | 13 |
| abstract_inverted_index.and | 17, 71, 76, 132, 156, 184, 191, 196 |
| abstract_inverted_index.are | 3, 14 |
| abstract_inverted_index.for | 88 |
| abstract_inverted_index.not | 20 |
| abstract_inverted_index.the | 7, 22, 30, 116, 137, 149, 153, 174, 178, 181, 202, 205 |
| abstract_inverted_index.This | 28 |
| abstract_inverted_index.both | 74 |
| abstract_inverted_index.data | 35, 70, 100, 150 |
| abstract_inverted_index.from | 36, 115 |
| abstract_inverted_index.into | 112 |
| abstract_inverted_index.some | 56 |
| abstract_inverted_index.this | 96 |
| abstract_inverted_index.time | 117 |
| abstract_inverted_index.when | 50 |
| abstract_inverted_index.with | 52 |
| abstract_inverted_index.(IFs) | 2 |
| abstract_inverted_index.Next, | 135 |
| abstract_inverted_index.Then, | 120 |
| abstract_inverted_index.based | 60, 165, 193 |
| abstract_inverted_index.data, | 199 |
| abstract_inverted_index.data. | 54 |
| abstract_inverted_index.faced | 51 |
| abstract_inverted_index.fault | 90 |
| abstract_inverted_index.field | 197 |
| abstract_inverted_index.image | 69, 104, 123 |
| abstract_inverted_index.leads | 29 |
| abstract_inverted_index.model | 164 |
| abstract_inverted_index.power | 11 |
| abstract_inverted_index.relay | 25 |
| abstract_inverted_index.stage | 155 |
| abstract_inverted_index.these | 82 |
| abstract_inverted_index.which | 200 |
| abstract_inverted_index.(CNNs) | 170 |
| abstract_inverted_index.0.9720 | 190 |
| abstract_inverted_index.0.9840 | 192 |
| abstract_inverted_index.before | 6 |
| abstract_inverted_index.better | 99 |
| abstract_inverted_index.cannot | 46, 66, 72 |
| abstract_inverted_index.domain | 118 |
| abstract_inverted_index.faults | 1 |
| abstract_inverted_index.fusion | 124 |
| abstract_inverted_index.images | 65, 114 |
| abstract_inverted_index.neural | 168 |
| abstract_inverted_index.obtain | 67 |
| abstract_inverted_index.paper. | 97 |
| abstract_inverted_index.signal | 57 |
| abstract_inverted_index.stage, | 139 |
| abstract_inverted_index.stage. | 159 |
| abstract_inverted_index.states | 5 |
| abstract_inverted_index.achieve | 47 |
| abstract_inverted_index.address | 148 |
| abstract_inverted_index.analyze | 73, 130 |
| abstract_inverted_index.between | 152 |
| abstract_inverted_index.convert | 110 |
| abstract_inverted_index.current | 75, 133 |
| abstract_inverted_index.failure | 9 |
| abstract_inverted_index.images. | 134 |
| abstract_inverted_index.limited | 53 |
| abstract_inverted_index.method. | 207 |
| abstract_inverted_index.methods | 45, 59 |
| abstract_inverted_index.reached | 189 |
| abstract_inverted_index.resolve | 81 |
| abstract_inverted_index.signals | 78 |
| abstract_inverted_index.through | 173 |
| abstract_inverted_index.trigger | 21 |
| abstract_inverted_index.voltage | 77, 131 |
| abstract_inverted_index.Besides, | 55 |
| abstract_inverted_index.Finally, | 160 |
| abstract_inverted_index.However, | 42 |
| abstract_inverted_index.abnormal | 4 |
| abstract_inverted_index.accuracy | 186 |
| abstract_inverted_index.adaptive | 122 |
| abstract_inverted_index.analysis | 58 |
| abstract_inverted_index.devices. | 27, 41 |
| abstract_inverted_index.few-shot | 85 |
| abstract_inverted_index.networks | 169 |
| abstract_inverted_index.obtained | 172 |
| abstract_inverted_index.process. | 176 |
| abstract_inverted_index.proposed | 94, 108, 206 |
| abstract_inverted_index.results, | 180 |
| abstract_inverted_index.strategy | 106, 125, 144 |
| abstract_inverted_index.waveform | 37, 62, 103 |
| abstract_inverted_index.FSMLF-IFD | 188 |
| abstract_inverted_index.Incipient | 0 |
| abstract_inverted_index.capturing | 33 |
| abstract_inverted_index.detection | 44, 91, 158, 163, 183 |
| abstract_inverted_index.developed | 127 |
| abstract_inverted_index.framework | 87 |
| abstract_inverted_index.generally | 18 |
| abstract_inverted_index.incipient | 89 |
| abstract_inverted_index.numerical | 179 |
| abstract_inverted_index.operation | 23 |
| abstract_inverted_index.permanent | 8 |
| abstract_inverted_index.problems, | 83 |
| abstract_inverted_index.recording | 40 |
| abstract_inverted_index.transient | 16 |
| abstract_inverted_index.typically | 15 |
| abstract_inverted_index.validates | 201 |
| abstract_inverted_index.waveforms | 111 |
| abstract_inverted_index.weighting | 142 |
| abstract_inverted_index.conversion | 63, 105 |
| abstract_inverted_index.difficulty | 31 |
| abstract_inverted_index.equipment. | 12 |
| abstract_inverted_index.monitoring | 38 |
| abstract_inverted_index.protection | 26 |
| abstract_inverted_index.simulation | 195 |
| abstract_inverted_index.(FSMLF-IFD) | 92 |
| abstract_inverted_index.constructed | 146 |
| abstract_inverted_index.differences | 151 |
| abstract_inverted_index.fine-tuning | 175 |
| abstract_inverted_index.performance | 49 |
| abstract_inverted_index.processing, | 101 |
| abstract_inverted_index.traditional | 43 |
| abstract_inverted_index.concurrently | 129 |
| abstract_inverted_index.perspective. | 119 |
| abstract_inverted_index.satisfactory | 48 |
| abstract_inverted_index.convolutional | 167 |
| abstract_inverted_index.effectiveness | 203 |
| abstract_inverted_index.meta-learning | 86 |
| abstract_inverted_index.meta-training | 138, 154 |
| abstract_inverted_index.classification | 185 |
| abstract_inverted_index.initialization | 143 |
| abstract_inverted_index.understandable | 68, 113 |
| abstract_inverted_index.simultaneously. | 79 |
| abstract_inverted_index.adaptability-enhancing | 141 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.79665177 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |