Learning Private Representations through Entropy-based Adversarial Training Article Swipe
Tassilo Klein
,
Moin Nabi
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.10194
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.10194
How can we learn a representation with high predictive power while preserving user privacy? We present an adversarial representation learning method for sanitizing sensitive content from the learned representation. Specifically, we introduce a variant of entropy - focal entropy, which mitigates the potential information leakage of the existing entropy-based approaches. We showcase feasibility on multiple benchmarks. The results suggest high target utility at moderate privacy leakage.
Related Topics
Concepts
No concepts available.
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.10194
- https://arxiv.org/pdf/2507.10194
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414739196
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414739196Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.10194Digital Object Identifier
- Title
-
Learning Private Representations through Entropy-based Adversarial TrainingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-14Full publication date if available
- Authors
-
Tassilo Klein, Moin NabiList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.10194Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.10194Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.10194Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414739196 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.10194 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.10194 |
| ids.openalex | https://openalex.org/W4414739196 |
| fwci | |
| type | preprint |
| title | Learning Private Representations through Entropy-based Adversarial Training |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9951000213623047 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.10194 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.10194 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.10194 |
| locations[1].id | doi:10.48550/arxiv.2507.10194 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.10194 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5023876634 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0631-2940 |
| authorships[0].author.display_name | Tassilo Klein |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Klein, Tassilo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5001459748 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7559-9888 |
| authorships[1].author.display_name | Moin Nabi |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Nabi, Moin |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.10194 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Private Representations through Entropy-based Adversarial Training |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9951000213623047 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.10194 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.10194 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.10194 |
| primary_location.id | pmh:oai:arXiv.org:2507.10194 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.10194 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.10194 |
| publication_date | 2025-07-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 36 |
| abstract_inverted_index.a | 4, 32 |
| abstract_inverted_index.We | 14, 50 |
| abstract_inverted_index.an | 16 |
| abstract_inverted_index.at | 62 |
| abstract_inverted_index.of | 34, 45 |
| abstract_inverted_index.on | 53 |
| abstract_inverted_index.we | 2, 30 |
| abstract_inverted_index.How | 0 |
| abstract_inverted_index.The | 56 |
| abstract_inverted_index.can | 1 |
| abstract_inverted_index.for | 21 |
| abstract_inverted_index.the | 26, 41, 46 |
| abstract_inverted_index.from | 25 |
| abstract_inverted_index.high | 7, 59 |
| abstract_inverted_index.user | 12 |
| abstract_inverted_index.with | 6 |
| abstract_inverted_index.focal | 37 |
| abstract_inverted_index.learn | 3 |
| abstract_inverted_index.power | 9 |
| abstract_inverted_index.which | 39 |
| abstract_inverted_index.while | 10 |
| abstract_inverted_index.method | 20 |
| abstract_inverted_index.target | 60 |
| abstract_inverted_index.content | 24 |
| abstract_inverted_index.entropy | 35 |
| abstract_inverted_index.leakage | 44 |
| abstract_inverted_index.learned | 27 |
| abstract_inverted_index.present | 15 |
| abstract_inverted_index.privacy | 64 |
| abstract_inverted_index.results | 57 |
| abstract_inverted_index.suggest | 58 |
| abstract_inverted_index.utility | 61 |
| abstract_inverted_index.variant | 33 |
| abstract_inverted_index.entropy, | 38 |
| abstract_inverted_index.existing | 47 |
| abstract_inverted_index.leakage. | 65 |
| abstract_inverted_index.learning | 19 |
| abstract_inverted_index.moderate | 63 |
| abstract_inverted_index.multiple | 54 |
| abstract_inverted_index.privacy? | 13 |
| abstract_inverted_index.showcase | 51 |
| abstract_inverted_index.introduce | 31 |
| abstract_inverted_index.mitigates | 40 |
| abstract_inverted_index.potential | 42 |
| abstract_inverted_index.sensitive | 23 |
| abstract_inverted_index.predictive | 8 |
| abstract_inverted_index.preserving | 11 |
| abstract_inverted_index.sanitizing | 22 |
| abstract_inverted_index.adversarial | 17 |
| abstract_inverted_index.approaches. | 49 |
| abstract_inverted_index.benchmarks. | 55 |
| abstract_inverted_index.feasibility | 52 |
| abstract_inverted_index.information | 43 |
| abstract_inverted_index.Specifically, | 29 |
| abstract_inverted_index.entropy-based | 48 |
| abstract_inverted_index.representation | 5, 18 |
| abstract_inverted_index.representation. | 28 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |