Learning Sampling Distributions for Model Predictive Control Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2212.02587
Sampling-based methods have become a cornerstone of contemporary approaches to Model Predictive Control (MPC), as they make no restrictions on the differentiability of the dynamics or cost function and are straightforward to parallelize. However, their efficacy is highly dependent on the quality of the sampling distribution itself, which is often assumed to be simple, like a Gaussian. This restriction can result in samples which are far from optimal, leading to poor performance. Recent work has explored improving the performance of MPC by sampling in a learned latent space of controls. However, these methods ultimately perform all MPC parameter updates and warm-starting between time steps in the control space. This requires us to rely on a number of heuristics for generating samples and updating the distribution and may lead to sub-optimal performance. Instead, we propose to carry out all operations in the latent space, allowing us to take full advantage of the learned distribution. Specifically, we frame the learning problem as bi-level optimization and show how to train the controller with backpropagation-through-time. By using a normalizing flow parameterization of the distribution, we can leverage its tractable density to avoid requiring differentiability of the dynamics and cost function. Finally, we evaluate the proposed approach on simulated robotics tasks and demonstrate its ability to surpass the performance of prior methods and scale better with a reduced number of samples.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2212.02587
- https://arxiv.org/pdf/2212.02587
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4310880059
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4310880059Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2212.02587Digital Object Identifier
- Title
-
Learning Sampling Distributions for Model Predictive ControlWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-05Full publication date if available
- Authors
-
Jacob Sacks, Byron BootsList of authors in order
- Landing page
-
https://arxiv.org/abs/2212.02587Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2212.02587Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2212.02587Direct OA link when available
- Concepts
-
Computer science, Heuristics, Model predictive control, Mathematical optimization, Sampling (signal processing), Leverage (statistics), Artificial intelligence, Machine learning, Reinforcement learning, Differentiable function, Importance sampling, Control (management), Mathematics, Statistics, Mathematical analysis, Monte Carlo method, Computer vision, Filter (signal processing)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4310880059 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2212.02587 |
| ids.doi | https://doi.org/10.48550/arxiv.2212.02587 |
| ids.openalex | https://openalex.org/W4310880059 |
| fwci | |
| type | preprint |
| title | Learning Sampling Distributions for Model Predictive Control |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10791 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Advanced Control Systems Optimization |
| topics[1].id | https://openalex.org/T10412 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9811000227928162 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Microfluidic and Capillary Electrophoresis Applications |
| topics[2].id | https://openalex.org/T12072 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9718999862670898 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6805102825164795 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C127705205 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6379495859146118 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5748245 |
| concepts[1].display_name | Heuristics |
| concepts[2].id | https://openalex.org/C172205157 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6155999898910522 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1782962 |
| concepts[2].display_name | Model predictive control |
| concepts[3].id | https://openalex.org/C126255220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5202128291130066 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[3].display_name | Mathematical optimization |
| concepts[4].id | https://openalex.org/C140779682 |
| concepts[4].level | 3 |
| concepts[4].score | 0.48535409569740295 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[4].display_name | Sampling (signal processing) |
| concepts[5].id | https://openalex.org/C153083717 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48484885692596436 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[5].display_name | Leverage (statistics) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.467134952545166 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4570680856704712 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C97541855 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4261002540588379 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[8].display_name | Reinforcement learning |
| concepts[9].id | https://openalex.org/C202615002 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42512014508247375 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q783507 |
| concepts[9].display_name | Differentiable function |
| concepts[10].id | https://openalex.org/C52740198 |
| concepts[10].level | 3 |
| concepts[10].score | 0.41299107670783997 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1539564 |
| concepts[10].display_name | Importance sampling |
| concepts[11].id | https://openalex.org/C2775924081 |
| concepts[11].level | 2 |
| concepts[11].score | 0.21494880318641663 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[11].display_name | Control (management) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.20876985788345337 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C19499675 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[15].display_name | Monte Carlo method |
| concepts[16].id | https://openalex.org/C31972630 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[16].display_name | Computer vision |
| concepts[17].id | https://openalex.org/C106131492 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[17].display_name | Filter (signal processing) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6805102825164795 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/heuristics |
| keywords[1].score | 0.6379495859146118 |
| keywords[1].display_name | Heuristics |
| keywords[2].id | https://openalex.org/keywords/model-predictive-control |
| keywords[2].score | 0.6155999898910522 |
| keywords[2].display_name | Model predictive control |
| keywords[3].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[3].score | 0.5202128291130066 |
| keywords[3].display_name | Mathematical optimization |
| keywords[4].id | https://openalex.org/keywords/sampling |
| keywords[4].score | 0.48535409569740295 |
| keywords[4].display_name | Sampling (signal processing) |
| keywords[5].id | https://openalex.org/keywords/leverage |
| keywords[5].score | 0.48484885692596436 |
| keywords[5].display_name | Leverage (statistics) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.467134952545166 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4570680856704712 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[8].score | 0.4261002540588379 |
| keywords[8].display_name | Reinforcement learning |
| keywords[9].id | https://openalex.org/keywords/differentiable-function |
| keywords[9].score | 0.42512014508247375 |
| keywords[9].display_name | Differentiable function |
| keywords[10].id | https://openalex.org/keywords/importance-sampling |
| keywords[10].score | 0.41299107670783997 |
| keywords[10].display_name | Importance sampling |
| keywords[11].id | https://openalex.org/keywords/control |
| keywords[11].score | 0.21494880318641663 |
| keywords[11].display_name | Control (management) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.20876985788345337 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2212.02587 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2212.02587 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2212.02587 |
| locations[1].id | doi:10.48550/arxiv.2212.02587 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2212.02587 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5113723288 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jacob Sacks |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sacks, Jacob |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110797782 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Byron Boots |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Boots, Byron |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2212.02587 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Sampling Distributions for Model Predictive Control |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10791 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Advanced Control Systems Optimization |
| related_works | https://openalex.org/W4285277090, https://openalex.org/W4327738859, https://openalex.org/W2280422768, https://openalex.org/W3143197806, https://openalex.org/W4252555497, https://openalex.org/W3121175838, https://openalex.org/W3016293053, https://openalex.org/W1690653314, https://openalex.org/W2401723157, https://openalex.org/W2065055572 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2212.02587 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2212.02587 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2212.02587 |
| primary_location.id | pmh:oai:arXiv.org:2212.02587 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2212.02587 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2212.02587 |
| publication_date | 2022-12-05 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 55, 84, 114, 173, 221 |
| abstract_inverted_index.By | 171 |
| abstract_inverted_index.as | 14, 159 |
| abstract_inverted_index.be | 52 |
| abstract_inverted_index.by | 81 |
| abstract_inverted_index.in | 61, 83, 104, 139 |
| abstract_inverted_index.is | 36, 48 |
| abstract_inverted_index.no | 17 |
| abstract_inverted_index.of | 6, 22, 42, 79, 88, 116, 149, 177, 190, 214, 224 |
| abstract_inverted_index.on | 19, 39, 113, 202 |
| abstract_inverted_index.or | 25 |
| abstract_inverted_index.to | 9, 31, 51, 69, 111, 128, 134, 145, 165, 186, 210 |
| abstract_inverted_index.us | 110, 144 |
| abstract_inverted_index.we | 132, 154, 180, 197 |
| abstract_inverted_index.MPC | 80, 96 |
| abstract_inverted_index.all | 95, 137 |
| abstract_inverted_index.and | 28, 99, 121, 125, 162, 193, 206, 217 |
| abstract_inverted_index.are | 29, 64 |
| abstract_inverted_index.can | 59, 181 |
| abstract_inverted_index.far | 65 |
| abstract_inverted_index.for | 118 |
| abstract_inverted_index.has | 74 |
| abstract_inverted_index.how | 164 |
| abstract_inverted_index.its | 183, 208 |
| abstract_inverted_index.may | 126 |
| abstract_inverted_index.out | 136 |
| abstract_inverted_index.the | 20, 23, 40, 43, 77, 105, 123, 140, 150, 156, 167, 178, 191, 199, 212 |
| abstract_inverted_index.This | 57, 108 |
| abstract_inverted_index.cost | 26, 194 |
| abstract_inverted_index.flow | 175 |
| abstract_inverted_index.from | 66 |
| abstract_inverted_index.full | 147 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.lead | 127 |
| abstract_inverted_index.like | 54 |
| abstract_inverted_index.make | 16 |
| abstract_inverted_index.poor | 70 |
| abstract_inverted_index.rely | 112 |
| abstract_inverted_index.show | 163 |
| abstract_inverted_index.take | 146 |
| abstract_inverted_index.they | 15 |
| abstract_inverted_index.time | 102 |
| abstract_inverted_index.with | 169, 220 |
| abstract_inverted_index.work | 73 |
| abstract_inverted_index.Model | 10 |
| abstract_inverted_index.avoid | 187 |
| abstract_inverted_index.carry | 135 |
| abstract_inverted_index.frame | 155 |
| abstract_inverted_index.often | 49 |
| abstract_inverted_index.prior | 215 |
| abstract_inverted_index.scale | 218 |
| abstract_inverted_index.space | 87 |
| abstract_inverted_index.steps | 103 |
| abstract_inverted_index.tasks | 205 |
| abstract_inverted_index.their | 34 |
| abstract_inverted_index.these | 91 |
| abstract_inverted_index.train | 166 |
| abstract_inverted_index.using | 172 |
| abstract_inverted_index.which | 47, 63 |
| abstract_inverted_index.(MPC), | 13 |
| abstract_inverted_index.Recent | 72 |
| abstract_inverted_index.become | 3 |
| abstract_inverted_index.better | 219 |
| abstract_inverted_index.highly | 37 |
| abstract_inverted_index.latent | 86, 141 |
| abstract_inverted_index.number | 115, 223 |
| abstract_inverted_index.result | 60 |
| abstract_inverted_index.space, | 142 |
| abstract_inverted_index.space. | 107 |
| abstract_inverted_index.Control | 12 |
| abstract_inverted_index.ability | 209 |
| abstract_inverted_index.assumed | 50 |
| abstract_inverted_index.between | 101 |
| abstract_inverted_index.control | 106 |
| abstract_inverted_index.density | 185 |
| abstract_inverted_index.itself, | 46 |
| abstract_inverted_index.leading | 68 |
| abstract_inverted_index.learned | 85, 151 |
| abstract_inverted_index.methods | 1, 92, 216 |
| abstract_inverted_index.perform | 94 |
| abstract_inverted_index.problem | 158 |
| abstract_inverted_index.propose | 133 |
| abstract_inverted_index.quality | 41 |
| abstract_inverted_index.reduced | 222 |
| abstract_inverted_index.samples | 62, 120 |
| abstract_inverted_index.simple, | 53 |
| abstract_inverted_index.surpass | 211 |
| abstract_inverted_index.updates | 98 |
| abstract_inverted_index.Finally, | 196 |
| abstract_inverted_index.However, | 33, 90 |
| abstract_inverted_index.Instead, | 131 |
| abstract_inverted_index.allowing | 143 |
| abstract_inverted_index.approach | 201 |
| abstract_inverted_index.bi-level | 160 |
| abstract_inverted_index.dynamics | 24, 192 |
| abstract_inverted_index.efficacy | 35 |
| abstract_inverted_index.evaluate | 198 |
| abstract_inverted_index.explored | 75 |
| abstract_inverted_index.function | 27 |
| abstract_inverted_index.learning | 157 |
| abstract_inverted_index.leverage | 182 |
| abstract_inverted_index.optimal, | 67 |
| abstract_inverted_index.proposed | 200 |
| abstract_inverted_index.requires | 109 |
| abstract_inverted_index.robotics | 204 |
| abstract_inverted_index.samples. | 225 |
| abstract_inverted_index.sampling | 44, 82 |
| abstract_inverted_index.updating | 122 |
| abstract_inverted_index.Gaussian. | 56 |
| abstract_inverted_index.advantage | 148 |
| abstract_inverted_index.controls. | 89 |
| abstract_inverted_index.dependent | 38 |
| abstract_inverted_index.function. | 195 |
| abstract_inverted_index.improving | 76 |
| abstract_inverted_index.parameter | 97 |
| abstract_inverted_index.requiring | 188 |
| abstract_inverted_index.simulated | 203 |
| abstract_inverted_index.tractable | 184 |
| abstract_inverted_index.Predictive | 11 |
| abstract_inverted_index.approaches | 8 |
| abstract_inverted_index.controller | 168 |
| abstract_inverted_index.generating | 119 |
| abstract_inverted_index.heuristics | 117 |
| abstract_inverted_index.operations | 138 |
| abstract_inverted_index.ultimately | 93 |
| abstract_inverted_index.cornerstone | 5 |
| abstract_inverted_index.demonstrate | 207 |
| abstract_inverted_index.normalizing | 174 |
| abstract_inverted_index.performance | 78, 213 |
| abstract_inverted_index.restriction | 58 |
| abstract_inverted_index.sub-optimal | 129 |
| abstract_inverted_index.contemporary | 7 |
| abstract_inverted_index.distribution | 45, 124 |
| abstract_inverted_index.optimization | 161 |
| abstract_inverted_index.parallelize. | 32 |
| abstract_inverted_index.performance. | 71, 130 |
| abstract_inverted_index.restrictions | 18 |
| abstract_inverted_index.Specifically, | 153 |
| abstract_inverted_index.distribution, | 179 |
| abstract_inverted_index.distribution. | 152 |
| abstract_inverted_index.warm-starting | 100 |
| abstract_inverted_index.Sampling-based | 0 |
| abstract_inverted_index.straightforward | 30 |
| abstract_inverted_index.parameterization | 176 |
| abstract_inverted_index.differentiability | 21, 189 |
| abstract_inverted_index.backpropagation-through-time. | 170 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |