Learning Scalable $\ell_\infty$-constrained Near-lossless Image Compression via Joint Lossy Image and Residual Compression Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2103.17015
We propose a novel joint lossy image and residual compression framework for learning $\ell_\infty$-constrained near-lossless image compression. Specifically, we obtain a lossy reconstruction of the raw image through lossy image compression and uniformly quantize the corresponding residual to satisfy a given tight $\ell_\infty$ error bound. Suppose that the error bound is zero, i.e., lossless image compression, we formulate the joint optimization problem of compressing both the lossy image and the original residual in terms of variational auto-encoders and solve it with end-to-end training. To achieve scalable compression with the error bound larger than zero, we derive the probability model of the quantized residual by quantizing the learned probability model of the original residual, instead of training multiple networks. We further correct the bias of the derived probability model caused by the context mismatch between training and inference. Finally, the quantized residual is encoded according to the bias-corrected probability model and is concatenated with the bitstream of the compressed lossy image. Experimental results demonstrate that our near-lossless codec achieves the state-of-the-art performance for lossless and near-lossless image compression, and achieves competitive PSNR while much smaller $\ell_\infty$ error compared with lossy image codecs at high bit rates.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2103.17015
- https://arxiv.org/pdf/2103.17015
- OA Status
- green
- Cited By
- 1
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3142718519
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3142718519Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2103.17015Digital Object Identifier
- Title
-
Learning Scalable $\ell_\infty$-constrained Near-lossless Image Compression via Joint Lossy Image and Residual CompressionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-03-31Full publication date if available
- Authors
-
Yuanchao Bai, Xianming Liu, Wangmeng Zuo, Yaowei Wang, Xiangyang JiList of authors in order
- Landing page
-
https://arxiv.org/abs/2103.17015Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2103.17015Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2103.17015Direct OA link when available
- Concepts
-
Lossy compression, Lossless compression, Image compression, Codec, Residual, Algorithm, Computer science, Data compression, Data compression ratio, Compression artifact, Mathematics, Artificial intelligence, Image (mathematics), Image processing, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3142718519 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2103.17015 |
| ids.doi | https://doi.org/10.48550/arxiv.2103.17015 |
| ids.mag | 3142718519 |
| ids.openalex | https://openalex.org/W3142718519 |
| fwci | |
| type | preprint |
| title | Learning Scalable $\ell_\infty$-constrained Near-lossless Image Compression via Joint Lossy Image and Residual Compression |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| topics[1].id | https://openalex.org/T10901 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9998999834060669 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Data Compression Techniques |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9998000264167786 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C165021410 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9327009916305542 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q55564 |
| concepts[0].display_name | Lossy compression |
| concepts[1].id | https://openalex.org/C81081738 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8190199732780457 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q55542 |
| concepts[1].display_name | Lossless compression |
| concepts[2].id | https://openalex.org/C13481523 |
| concepts[2].level | 4 |
| concepts[2].score | 0.7404832243919373 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q412438 |
| concepts[2].display_name | Image compression |
| concepts[3].id | https://openalex.org/C161765866 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5876967906951904 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q184748 |
| concepts[3].display_name | Codec |
| concepts[4].id | https://openalex.org/C155512373 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5809244513511658 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[4].display_name | Residual |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5414711236953735 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.496401846408844 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C78548338 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48638680577278137 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[7].display_name | Data compression |
| concepts[8].id | https://openalex.org/C94835093 |
| concepts[8].level | 5 |
| concepts[8].score | 0.4830799400806427 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3113333 |
| concepts[8].display_name | Data compression ratio |
| concepts[9].id | https://openalex.org/C57654395 |
| concepts[9].level | 5 |
| concepts[9].score | 0.41712307929992676 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1097775 |
| concepts[9].display_name | Compression artifact |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.39829832315444946 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3791336715221405 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3205854892730713 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C9417928 |
| concepts[13].level | 3 |
| concepts[13].score | 0.18549895286560059 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[13].display_name | Image processing |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.05843457579612732 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/lossy-compression |
| keywords[0].score | 0.9327009916305542 |
| keywords[0].display_name | Lossy compression |
| keywords[1].id | https://openalex.org/keywords/lossless-compression |
| keywords[1].score | 0.8190199732780457 |
| keywords[1].display_name | Lossless compression |
| keywords[2].id | https://openalex.org/keywords/image-compression |
| keywords[2].score | 0.7404832243919373 |
| keywords[2].display_name | Image compression |
| keywords[3].id | https://openalex.org/keywords/codec |
| keywords[3].score | 0.5876967906951904 |
| keywords[3].display_name | Codec |
| keywords[4].id | https://openalex.org/keywords/residual |
| keywords[4].score | 0.5809244513511658 |
| keywords[4].display_name | Residual |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.5414711236953735 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.496401846408844 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/data-compression |
| keywords[7].score | 0.48638680577278137 |
| keywords[7].display_name | Data compression |
| keywords[8].id | https://openalex.org/keywords/data-compression-ratio |
| keywords[8].score | 0.4830799400806427 |
| keywords[8].display_name | Data compression ratio |
| keywords[9].id | https://openalex.org/keywords/compression-artifact |
| keywords[9].score | 0.41712307929992676 |
| keywords[9].display_name | Compression artifact |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.39829832315444946 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.3791336715221405 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.3205854892730713 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/image-processing |
| keywords[13].score | 0.18549895286560059 |
| keywords[13].display_name | Image processing |
| keywords[14].id | https://openalex.org/keywords/telecommunications |
| keywords[14].score | 0.05843457579612732 |
| keywords[14].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2103.17015 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2103.17015 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2103.17015 |
| locations[1].id | doi:10.48550/arxiv.2103.17015 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2103.17015 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5024093994 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3449-6537 |
| authorships[0].author.display_name | Yuanchao Bai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuanchao Bai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100654390 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8857-1785 |
| authorships[1].author.display_name | Xianming Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xianming Liu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100636655 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3330-783X |
| authorships[2].author.display_name | Wangmeng Zuo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wangmeng Zuo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100631216 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2197-9038 |
| authorships[3].author.display_name | Yaowei Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yaowei Wang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5024401174 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7333-9975 |
| authorships[4].author.display_name | Xiangyang Ji |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xiangyang Ji |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2103.17015 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-04-13T00:00:00 |
| display_name | Learning Scalable $\ell_\infty$-constrained Near-lossless Image Compression via Joint Lossy Image and Residual Compression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| related_works | https://openalex.org/W4287393224, https://openalex.org/W3118996461, https://openalex.org/W2541319825, https://openalex.org/W2071387875, https://openalex.org/W1680283075, https://openalex.org/W3080614128, https://openalex.org/W4239869440, https://openalex.org/W2357670775, https://openalex.org/W2380116549, https://openalex.org/W3202870363 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2103.17015 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2103.17015 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2103.17015 |
| primary_location.id | pmh:oai:arXiv.org:2103.17015 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2103.17015 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2103.17015 |
| publication_date | 2021-03-31 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2153638435, https://openalex.org/W2963948038, https://openalex.org/W2099563019, https://openalex.org/W3014578089, https://openalex.org/W2096445898, https://openalex.org/W1518500973, https://openalex.org/W2166816543, https://openalex.org/W4226151124, https://openalex.org/W2129652681, https://openalex.org/W2099778990, https://openalex.org/W2970774025, https://openalex.org/W2962891349, https://openalex.org/W2965631471, https://openalex.org/W2893920456, https://openalex.org/W2963449488, https://openalex.org/W135467536, https://openalex.org/W2962790638, https://openalex.org/W1580389772, https://openalex.org/W2140196014, https://openalex.org/W2133665775, https://openalex.org/W1959608418, https://openalex.org/W2518435514, https://openalex.org/W1995875735, https://openalex.org/W2741137940, https://openalex.org/W2964098744, https://openalex.org/W2892278106, https://openalex.org/W2964122153, https://openalex.org/W2982853315, https://openalex.org/W2011512259, https://openalex.org/W2963636093, https://openalex.org/W3103781353, https://openalex.org/W3103543904, https://openalex.org/W2964121744, https://openalex.org/W2267126114, https://openalex.org/W2110707318, https://openalex.org/W2963149687, https://openalex.org/W3034743539, https://openalex.org/W2954655735, https://openalex.org/W3035294152, https://openalex.org/W2593493485, https://openalex.org/W3034469748, https://openalex.org/W2604392022 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 2, 20, 39 |
| abstract_inverted_index.To | 83 |
| abstract_inverted_index.We | 0, 118 |
| abstract_inverted_index.at | 191 |
| abstract_inverted_index.by | 103, 129 |
| abstract_inverted_index.in | 72 |
| abstract_inverted_index.is | 50, 141, 150 |
| abstract_inverted_index.it | 79 |
| abstract_inverted_index.of | 23, 62, 74, 99, 109, 114, 123, 155 |
| abstract_inverted_index.to | 37, 144 |
| abstract_inverted_index.we | 18, 56, 94 |
| abstract_inverted_index.and | 7, 31, 68, 77, 135, 149, 173, 177 |
| abstract_inverted_index.bit | 193 |
| abstract_inverted_index.for | 11, 171 |
| abstract_inverted_index.our | 164 |
| abstract_inverted_index.raw | 25 |
| abstract_inverted_index.the | 24, 34, 47, 58, 65, 69, 88, 96, 100, 105, 110, 121, 124, 130, 138, 145, 153, 156, 168 |
| abstract_inverted_index.PSNR | 180 |
| abstract_inverted_index.bias | 122 |
| abstract_inverted_index.both | 64 |
| abstract_inverted_index.high | 192 |
| abstract_inverted_index.much | 182 |
| abstract_inverted_index.than | 92 |
| abstract_inverted_index.that | 46, 163 |
| abstract_inverted_index.with | 80, 87, 152, 187 |
| abstract_inverted_index.bound | 49, 90 |
| abstract_inverted_index.codec | 166 |
| abstract_inverted_index.error | 43, 48, 89, 185 |
| abstract_inverted_index.given | 40 |
| abstract_inverted_index.i.e., | 52 |
| abstract_inverted_index.image | 6, 15, 26, 29, 54, 67, 175, 189 |
| abstract_inverted_index.joint | 4, 59 |
| abstract_inverted_index.lossy | 5, 21, 28, 66, 158, 188 |
| abstract_inverted_index.model | 98, 108, 127, 148 |
| abstract_inverted_index.novel | 3 |
| abstract_inverted_index.solve | 78 |
| abstract_inverted_index.terms | 73 |
| abstract_inverted_index.tight | 41 |
| abstract_inverted_index.while | 181 |
| abstract_inverted_index.zero, | 51, 93 |
| abstract_inverted_index.bound. | 44 |
| abstract_inverted_index.caused | 128 |
| abstract_inverted_index.codecs | 190 |
| abstract_inverted_index.derive | 95 |
| abstract_inverted_index.image. | 159 |
| abstract_inverted_index.larger | 91 |
| abstract_inverted_index.obtain | 19 |
| abstract_inverted_index.rates. | 194 |
| abstract_inverted_index.Suppose | 45 |
| abstract_inverted_index.achieve | 84 |
| abstract_inverted_index.between | 133 |
| abstract_inverted_index.context | 131 |
| abstract_inverted_index.correct | 120 |
| abstract_inverted_index.derived | 125 |
| abstract_inverted_index.encoded | 142 |
| abstract_inverted_index.further | 119 |
| abstract_inverted_index.instead | 113 |
| abstract_inverted_index.learned | 106 |
| abstract_inverted_index.problem | 61 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.results | 161 |
| abstract_inverted_index.satisfy | 38 |
| abstract_inverted_index.smaller | 183 |
| abstract_inverted_index.through | 27 |
| abstract_inverted_index.Finally, | 137 |
| abstract_inverted_index.achieves | 167, 178 |
| abstract_inverted_index.compared | 186 |
| abstract_inverted_index.learning | 12 |
| abstract_inverted_index.lossless | 53, 172 |
| abstract_inverted_index.mismatch | 132 |
| abstract_inverted_index.multiple | 116 |
| abstract_inverted_index.original | 70, 111 |
| abstract_inverted_index.quantize | 33 |
| abstract_inverted_index.residual | 8, 36, 71, 102, 140 |
| abstract_inverted_index.scalable | 85 |
| abstract_inverted_index.training | 115, 134 |
| abstract_inverted_index.according | 143 |
| abstract_inverted_index.bitstream | 154 |
| abstract_inverted_index.formulate | 57 |
| abstract_inverted_index.framework | 10 |
| abstract_inverted_index.networks. | 117 |
| abstract_inverted_index.quantized | 101, 139 |
| abstract_inverted_index.residual, | 112 |
| abstract_inverted_index.training. | 82 |
| abstract_inverted_index.uniformly | 32 |
| abstract_inverted_index.compressed | 157 |
| abstract_inverted_index.end-to-end | 81 |
| abstract_inverted_index.inference. | 136 |
| abstract_inverted_index.quantizing | 104 |
| abstract_inverted_index.competitive | 179 |
| abstract_inverted_index.compressing | 63 |
| abstract_inverted_index.compression | 9, 30, 86 |
| abstract_inverted_index.demonstrate | 162 |
| abstract_inverted_index.performance | 170 |
| abstract_inverted_index.probability | 97, 107, 126, 147 |
| abstract_inverted_index.variational | 75 |
| abstract_inverted_index.Experimental | 160 |
| abstract_inverted_index.compression, | 55, 176 |
| abstract_inverted_index.compression. | 16 |
| abstract_inverted_index.concatenated | 151 |
| abstract_inverted_index.optimization | 60 |
| abstract_inverted_index.$\ell_\infty$ | 42, 184 |
| abstract_inverted_index.Specifically, | 17 |
| abstract_inverted_index.auto-encoders | 76 |
| abstract_inverted_index.corresponding | 35 |
| abstract_inverted_index.near-lossless | 14, 165, 174 |
| abstract_inverted_index.bias-corrected | 146 |
| abstract_inverted_index.reconstruction | 22 |
| abstract_inverted_index.state-of-the-art | 169 |
| abstract_inverted_index.$\ell_\infty$-constrained | 13 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |