Learning shared neural manifolds from multi-subject FMRI data Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2201.00622
Functional magnetic resonance imaging (fMRI) is a notoriously noisy measurement of brain activity because of the large variations between individuals, signals marred by environmental differences during collection, and spatiotemporal averaging required by the measurement resolution. In addition, the data is extremely high dimensional, with the space of the activity typically having much lower intrinsic dimension. In order to understand the connection between stimuli of interest and brain activity, and analyze differences and commonalities between subjects, it becomes important to learn a meaningful embedding of the data that denoises, and reveals its intrinsic structure. Specifically, we assume that while noise varies significantly between individuals, true responses to stimuli will share common, low-dimensional features between subjects which are jointly discoverable. Similar approaches have been exploited previously but they have mainly used linear methods such as PCA and shared response modeling (SRM). In contrast, we propose a neural network called MRMD-AE (manifold-regularized multiple decoder, autoencoder), that learns a common embedding from multiple subjects in an experiment while retaining the ability to decode to individual raw fMRI signals. We show that our learned common space represents an extensible manifold (where new points not seen during training can be mapped), improves the classification accuracy of stimulus features of unseen timepoints, as well as improves cross-subject translation of fMRI signals. We believe this framework can be used for many downstream applications such as guided brain-computer interface (BCI) training in the future.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2201.00622
- https://arxiv.org/pdf/2201.00622
- OA Status
- green
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226429377
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226429377Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2201.00622Digital Object Identifier
- Title
-
Learning shared neural manifolds from multi-subject FMRI dataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-22Full publication date if available
- Authors
-
Jessie Huang, Erica L. Busch, Tom Wallenstein, Michal Gerasimiuk, Andrew Benz, Guillaume Lajoie, Guy Wolf, Nicholas B. Turk‐Browne, Smita KrishnaswamyList of authors in order
- Landing page
-
https://arxiv.org/abs/2201.00622Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2201.00622Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2201.00622Direct OA link when available
- Concepts
-
Computer science, Embedding, Functional magnetic resonance imaging, Artificial intelligence, Nonlinear dimensionality reduction, Autoencoder, Pattern recognition (psychology), Brain–computer interface, Brain activity and meditation, Stimulus (psychology), Artificial neural network, Machine learning, Dimensionality reduction, Psychology, Neuroscience, Electroencephalography, Cognitive psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226429377 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2201.00622 |
| ids.doi | https://doi.org/10.48550/arxiv.2201.00622 |
| ids.openalex | https://openalex.org/W4226429377 |
| fwci | |
| type | preprint |
| title | Learning shared neural manifolds from multi-subject FMRI data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10241 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9947999715805054 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Functional Brain Connectivity Studies |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9301000237464905 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6988984942436218 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C41608201 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6098611354827881 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[1].display_name | Embedding |
| concepts[2].id | https://openalex.org/C2779226451 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5907236337661743 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q903809 |
| concepts[2].display_name | Functional magnetic resonance imaging |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5852856636047363 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C151876577 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5538090467453003 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7049464 |
| concepts[4].display_name | Nonlinear dimensionality reduction |
| concepts[5].id | https://openalex.org/C101738243 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4945087134838104 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[5].display_name | Autoencoder |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48270297050476074 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C173201364 |
| concepts[7].level | 3 |
| concepts[7].score | 0.44766709208488464 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q897410 |
| concepts[7].display_name | Brain–computer interface |
| concepts[8].id | https://openalex.org/C120843803 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42842769622802734 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4955807 |
| concepts[8].display_name | Brain activity and meditation |
| concepts[9].id | https://openalex.org/C2779918689 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4236403703689575 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3771842 |
| concepts[9].display_name | Stimulus (psychology) |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3772139549255371 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.36621469259262085 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C70518039 |
| concepts[12].level | 2 |
| concepts[12].score | 0.23031938076019287 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[12].display_name | Dimensionality reduction |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.18026217818260193 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C169760540 |
| concepts[14].level | 1 |
| concepts[14].score | 0.15410450100898743 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[14].display_name | Neuroscience |
| concepts[15].id | https://openalex.org/C522805319 |
| concepts[15].level | 2 |
| concepts[15].score | 0.1429494321346283 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[15].display_name | Electroencephalography |
| concepts[16].id | https://openalex.org/C180747234 |
| concepts[16].level | 1 |
| concepts[16].score | 0.128584086894989 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[16].display_name | Cognitive psychology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6988984942436218 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/embedding |
| keywords[1].score | 0.6098611354827881 |
| keywords[1].display_name | Embedding |
| keywords[2].id | https://openalex.org/keywords/functional-magnetic-resonance-imaging |
| keywords[2].score | 0.5907236337661743 |
| keywords[2].display_name | Functional magnetic resonance imaging |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5852856636047363 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/nonlinear-dimensionality-reduction |
| keywords[4].score | 0.5538090467453003 |
| keywords[4].display_name | Nonlinear dimensionality reduction |
| keywords[5].id | https://openalex.org/keywords/autoencoder |
| keywords[5].score | 0.4945087134838104 |
| keywords[5].display_name | Autoencoder |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.48270297050476074 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/brain–computer-interface |
| keywords[7].score | 0.44766709208488464 |
| keywords[7].display_name | Brain–computer interface |
| keywords[8].id | https://openalex.org/keywords/brain-activity-and-meditation |
| keywords[8].score | 0.42842769622802734 |
| keywords[8].display_name | Brain activity and meditation |
| keywords[9].id | https://openalex.org/keywords/stimulus |
| keywords[9].score | 0.4236403703689575 |
| keywords[9].display_name | Stimulus (psychology) |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.3772139549255371 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.36621469259262085 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[12].score | 0.23031938076019287 |
| keywords[12].display_name | Dimensionality reduction |
| keywords[13].id | https://openalex.org/keywords/psychology |
| keywords[13].score | 0.18026217818260193 |
| keywords[13].display_name | Psychology |
| keywords[14].id | https://openalex.org/keywords/neuroscience |
| keywords[14].score | 0.15410450100898743 |
| keywords[14].display_name | Neuroscience |
| keywords[15].id | https://openalex.org/keywords/electroencephalography |
| keywords[15].score | 0.1429494321346283 |
| keywords[15].display_name | Electroencephalography |
| keywords[16].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[16].score | 0.128584086894989 |
| keywords[16].display_name | Cognitive psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2201.00622 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | other-oa |
| locations[0].pdf_url | https://arxiv.org/pdf/2201.00622 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2201.00622 |
| locations[1].id | doi:10.48550/arxiv.2201.00622 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2201.00622 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5061861612 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5297-3563 |
| authorships[0].author.display_name | Jessie Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Jessie |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5060271360 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5906-9622 |
| authorships[1].author.display_name | Erica L. Busch |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Busch, Erica L. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5065930203 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Tom Wallenstein |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wallenstein, Tom |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024111002 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Michal Gerasimiuk |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gerasimiuk, Michal |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5020574550 |
| authorships[4].author.orcid | https://orcid.org/0009-0002-8118-1861 |
| authorships[4].author.display_name | Andrew Benz |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Benz, Andrew |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5043037494 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2730-7291 |
| authorships[5].author.display_name | Guillaume Lajoie |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lajoie, Guillaume |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5005117825 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6740-059X |
| authorships[6].author.display_name | Guy Wolf |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wolf, Guy |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5053538138 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7519-3001 |
| authorships[7].author.display_name | Nicholas B. Turk‐Browne |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Turk-Browne, Nicholas B. |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5045475274 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-5823-1985 |
| authorships[8].author.display_name | Smita Krishnaswamy |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Krishnaswamy, Smita |
| authorships[8].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2201.00622 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning shared neural manifolds from multi-subject FMRI data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2355395139, https://openalex.org/W4387713464, https://openalex.org/W128114763, https://openalex.org/W2146473982, https://openalex.org/W2524028122, https://openalex.org/W2042800611, https://openalex.org/W2051472919, https://openalex.org/W4386213410, https://openalex.org/W1981468049, https://openalex.org/W2072179998 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2201.00622 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2201.00622 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2201.00622 |
| primary_location.id | pmh:oai:arXiv.org:2201.00622 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | other-oa |
| primary_location.pdf_url | https://arxiv.org/pdf/2201.00622 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2201.00622 |
| publication_date | 2021-12-22 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 80, 143, 154 |
| abstract_inverted_index.In | 35, 55, 139 |
| abstract_inverted_index.We | 174, 214 |
| abstract_inverted_index.an | 161, 182 |
| abstract_inverted_index.as | 132, 205, 207, 226 |
| abstract_inverted_index.be | 193, 219 |
| abstract_inverted_index.by | 22, 31 |
| abstract_inverted_index.in | 160, 232 |
| abstract_inverted_index.is | 5, 39 |
| abstract_inverted_index.it | 75 |
| abstract_inverted_index.of | 10, 14, 46, 63, 83, 199, 202, 211 |
| abstract_inverted_index.to | 57, 78, 105, 167, 169 |
| abstract_inverted_index.we | 94, 141 |
| abstract_inverted_index.PCA | 133 |
| abstract_inverted_index.and | 27, 65, 68, 71, 88, 134 |
| abstract_inverted_index.are | 115 |
| abstract_inverted_index.but | 124 |
| abstract_inverted_index.can | 192, 218 |
| abstract_inverted_index.for | 221 |
| abstract_inverted_index.its | 90 |
| abstract_inverted_index.new | 186 |
| abstract_inverted_index.not | 188 |
| abstract_inverted_index.our | 177 |
| abstract_inverted_index.raw | 171 |
| abstract_inverted_index.the | 15, 32, 37, 44, 47, 59, 84, 165, 196, 233 |
| abstract_inverted_index.been | 121 |
| abstract_inverted_index.data | 38, 85 |
| abstract_inverted_index.fMRI | 172, 212 |
| abstract_inverted_index.from | 157 |
| abstract_inverted_index.have | 120, 126 |
| abstract_inverted_index.high | 41 |
| abstract_inverted_index.many | 222 |
| abstract_inverted_index.much | 51 |
| abstract_inverted_index.seen | 189 |
| abstract_inverted_index.show | 175 |
| abstract_inverted_index.such | 131, 225 |
| abstract_inverted_index.that | 86, 96, 152, 176 |
| abstract_inverted_index.they | 125 |
| abstract_inverted_index.this | 216 |
| abstract_inverted_index.true | 103 |
| abstract_inverted_index.used | 128, 220 |
| abstract_inverted_index.well | 206 |
| abstract_inverted_index.will | 107 |
| abstract_inverted_index.with | 43 |
| abstract_inverted_index.(BCI) | 230 |
| abstract_inverted_index.brain | 11, 66 |
| abstract_inverted_index.large | 16 |
| abstract_inverted_index.learn | 79 |
| abstract_inverted_index.lower | 52 |
| abstract_inverted_index.noise | 98 |
| abstract_inverted_index.noisy | 8 |
| abstract_inverted_index.order | 56 |
| abstract_inverted_index.share | 108 |
| abstract_inverted_index.space | 45, 180 |
| abstract_inverted_index.which | 114 |
| abstract_inverted_index.while | 97, 163 |
| abstract_inverted_index.(SRM). | 138 |
| abstract_inverted_index.(fMRI) | 4 |
| abstract_inverted_index.(where | 185 |
| abstract_inverted_index.assume | 95 |
| abstract_inverted_index.called | 146 |
| abstract_inverted_index.common | 155, 179 |
| abstract_inverted_index.decode | 168 |
| abstract_inverted_index.during | 25, 190 |
| abstract_inverted_index.guided | 227 |
| abstract_inverted_index.having | 50 |
| abstract_inverted_index.learns | 153 |
| abstract_inverted_index.linear | 129 |
| abstract_inverted_index.mainly | 127 |
| abstract_inverted_index.marred | 21 |
| abstract_inverted_index.neural | 144 |
| abstract_inverted_index.points | 187 |
| abstract_inverted_index.shared | 135 |
| abstract_inverted_index.unseen | 203 |
| abstract_inverted_index.varies | 99 |
| abstract_inverted_index.MRMD-AE | 147 |
| abstract_inverted_index.Similar | 118 |
| abstract_inverted_index.ability | 166 |
| abstract_inverted_index.analyze | 69 |
| abstract_inverted_index.because | 13 |
| abstract_inverted_index.becomes | 76 |
| abstract_inverted_index.believe | 215 |
| abstract_inverted_index.between | 18, 61, 73, 101, 112 |
| abstract_inverted_index.common, | 109 |
| abstract_inverted_index.future. | 234 |
| abstract_inverted_index.imaging | 3 |
| abstract_inverted_index.jointly | 116 |
| abstract_inverted_index.learned | 178 |
| abstract_inverted_index.methods | 130 |
| abstract_inverted_index.network | 145 |
| abstract_inverted_index.propose | 142 |
| abstract_inverted_index.reveals | 89 |
| abstract_inverted_index.signals | 20 |
| abstract_inverted_index.stimuli | 62, 106 |
| abstract_inverted_index.accuracy | 198 |
| abstract_inverted_index.activity | 12, 48 |
| abstract_inverted_index.decoder, | 150 |
| abstract_inverted_index.features | 111, 201 |
| abstract_inverted_index.improves | 195, 208 |
| abstract_inverted_index.interest | 64 |
| abstract_inverted_index.magnetic | 1 |
| abstract_inverted_index.manifold | 184 |
| abstract_inverted_index.mapped), | 194 |
| abstract_inverted_index.modeling | 137 |
| abstract_inverted_index.multiple | 149, 158 |
| abstract_inverted_index.required | 30 |
| abstract_inverted_index.response | 136 |
| abstract_inverted_index.signals. | 173, 213 |
| abstract_inverted_index.stimulus | 200 |
| abstract_inverted_index.subjects | 113, 159 |
| abstract_inverted_index.training | 191, 231 |
| abstract_inverted_index.activity, | 67 |
| abstract_inverted_index.addition, | 36 |
| abstract_inverted_index.averaging | 29 |
| abstract_inverted_index.contrast, | 140 |
| abstract_inverted_index.denoises, | 87 |
| abstract_inverted_index.embedding | 82, 156 |
| abstract_inverted_index.exploited | 122 |
| abstract_inverted_index.extremely | 40 |
| abstract_inverted_index.framework | 217 |
| abstract_inverted_index.important | 77 |
| abstract_inverted_index.interface | 229 |
| abstract_inverted_index.intrinsic | 53, 91 |
| abstract_inverted_index.resonance | 2 |
| abstract_inverted_index.responses | 104 |
| abstract_inverted_index.retaining | 164 |
| abstract_inverted_index.subjects, | 74 |
| abstract_inverted_index.typically | 49 |
| abstract_inverted_index.Functional | 0 |
| abstract_inverted_index.approaches | 119 |
| abstract_inverted_index.connection | 60 |
| abstract_inverted_index.dimension. | 54 |
| abstract_inverted_index.downstream | 223 |
| abstract_inverted_index.experiment | 162 |
| abstract_inverted_index.extensible | 183 |
| abstract_inverted_index.individual | 170 |
| abstract_inverted_index.meaningful | 81 |
| abstract_inverted_index.previously | 123 |
| abstract_inverted_index.represents | 181 |
| abstract_inverted_index.structure. | 92 |
| abstract_inverted_index.understand | 58 |
| abstract_inverted_index.variations | 17 |
| abstract_inverted_index.collection, | 26 |
| abstract_inverted_index.differences | 24, 70 |
| abstract_inverted_index.measurement | 9, 33 |
| abstract_inverted_index.notoriously | 7 |
| abstract_inverted_index.resolution. | 34 |
| abstract_inverted_index.timepoints, | 204 |
| abstract_inverted_index.translation | 210 |
| abstract_inverted_index.applications | 224 |
| abstract_inverted_index.dimensional, | 42 |
| abstract_inverted_index.individuals, | 19, 102 |
| abstract_inverted_index.Specifically, | 93 |
| abstract_inverted_index.autoencoder), | 151 |
| abstract_inverted_index.commonalities | 72 |
| abstract_inverted_index.cross-subject | 209 |
| abstract_inverted_index.discoverable. | 117 |
| abstract_inverted_index.environmental | 23 |
| abstract_inverted_index.significantly | 100 |
| abstract_inverted_index.brain-computer | 228 |
| abstract_inverted_index.classification | 197 |
| abstract_inverted_index.spatiotemporal | 28 |
| abstract_inverted_index.low-dimensional | 110 |
| abstract_inverted_index.(manifold-regularized | 148 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |