Learning skillful medium-range global weather forecasting Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1126/science.adi2336
Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning–based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1126/science.adi2336
- OA Status
- hybrid
- Cited By
- 800
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388654737
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388654737Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1126/science.adi2336Digital Object Identifier
- Title
-
Learning skillful medium-range global weather forecastingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-14Full publication date if available
- Authors
-
Rémi Lam, Álvaro Sánchez‐González, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose, Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mohamed, Peter BattagliaList of authors in order
- Landing page
-
https://doi.org/10.1126/science.adi2336Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1126/science.adi2336Direct OA link when available
- Concepts
-
Tropical cyclone forecast model, Computer science, Numerical weather prediction, Tropical cyclone, Meteorology, Weather forecasting, Range (aeronautics), Weather prediction, Model output statistics, Extreme weather, Key (lock), Global Forecast System, Machine learning, Artificial intelligence, Climate change, Geography, Ecology, Materials science, Computer security, Composite material, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
800Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 441, 2024: 331, 2023: 27Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388654737 |
|---|---|
| doi | https://doi.org/10.1126/science.adi2336 |
| ids.doi | https://doi.org/10.1126/science.adi2336 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37962497 |
| ids.openalex | https://openalex.org/W4388654737 |
| fwci | 162.2025994 |
| type | article |
| title | Learning skillful medium-range global weather forecasting |
| biblio.issue | 6677 |
| biblio.volume | 382 |
| biblio.last_page | 1421 |
| biblio.first_page | 1416 |
| topics[0].id | https://openalex.org/T10029 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Climate variability and models |
| topics[1].id | https://openalex.org/T10466 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Meteorological Phenomena and Simulations |
| topics[2].id | https://openalex.org/T11483 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9926000237464905 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Tropical and Extratropical Cyclones Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C102561126 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7494449615478516 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17164865 |
| concepts[0].display_name | Tropical cyclone forecast model |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6464874148368835 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C147947694 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6460537910461426 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q837552 |
| concepts[2].display_name | Numerical weather prediction |
| concepts[3].id | https://openalex.org/C29141058 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6411421895027161 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8092 |
| concepts[3].display_name | Tropical cyclone |
| concepts[4].id | https://openalex.org/C153294291 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5746132135391235 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[4].display_name | Meteorology |
| concepts[5].id | https://openalex.org/C21001229 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5566565990447998 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q182868 |
| concepts[5].display_name | Weather forecasting |
| concepts[6].id | https://openalex.org/C204323151 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5473523139953613 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[6].display_name | Range (aeronautics) |
| concepts[7].id | https://openalex.org/C2987469573 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5368011593818665 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q182868 |
| concepts[7].display_name | Weather prediction |
| concepts[8].id | https://openalex.org/C37505551 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5075150728225708 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1453537 |
| concepts[8].display_name | Model output statistics |
| concepts[9].id | https://openalex.org/C205537798 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4781680703163147 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1277161 |
| concepts[9].display_name | Extreme weather |
| concepts[10].id | https://openalex.org/C26517878 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43429049849510193 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[10].display_name | Key (lock) |
| concepts[11].id | https://openalex.org/C163109420 |
| concepts[11].level | 3 |
| concepts[11].score | 0.426877498626709 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q287011 |
| concepts[11].display_name | Global Forecast System |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.38560622930526733 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3721016049385071 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C132651083 |
| concepts[14].level | 2 |
| concepts[14].score | 0.1121741533279419 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7942 |
| concepts[14].display_name | Climate change |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.11179482936859131 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C18903297 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[16].display_name | Ecology |
| concepts[17].id | https://openalex.org/C192562407 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[17].display_name | Materials science |
| concepts[18].id | https://openalex.org/C38652104 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[18].display_name | Computer security |
| concepts[19].id | https://openalex.org/C159985019 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[19].display_name | Composite material |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/tropical-cyclone-forecast-model |
| keywords[0].score | 0.7494449615478516 |
| keywords[0].display_name | Tropical cyclone forecast model |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6464874148368835 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/numerical-weather-prediction |
| keywords[2].score | 0.6460537910461426 |
| keywords[2].display_name | Numerical weather prediction |
| keywords[3].id | https://openalex.org/keywords/tropical-cyclone |
| keywords[3].score | 0.6411421895027161 |
| keywords[3].display_name | Tropical cyclone |
| keywords[4].id | https://openalex.org/keywords/meteorology |
| keywords[4].score | 0.5746132135391235 |
| keywords[4].display_name | Meteorology |
| keywords[5].id | https://openalex.org/keywords/weather-forecasting |
| keywords[5].score | 0.5566565990447998 |
| keywords[5].display_name | Weather forecasting |
| keywords[6].id | https://openalex.org/keywords/range |
| keywords[6].score | 0.5473523139953613 |
| keywords[6].display_name | Range (aeronautics) |
| keywords[7].id | https://openalex.org/keywords/weather-prediction |
| keywords[7].score | 0.5368011593818665 |
| keywords[7].display_name | Weather prediction |
| keywords[8].id | https://openalex.org/keywords/model-output-statistics |
| keywords[8].score | 0.5075150728225708 |
| keywords[8].display_name | Model output statistics |
| keywords[9].id | https://openalex.org/keywords/extreme-weather |
| keywords[9].score | 0.4781680703163147 |
| keywords[9].display_name | Extreme weather |
| keywords[10].id | https://openalex.org/keywords/key |
| keywords[10].score | 0.43429049849510193 |
| keywords[10].display_name | Key (lock) |
| keywords[11].id | https://openalex.org/keywords/global-forecast-system |
| keywords[11].score | 0.426877498626709 |
| keywords[11].display_name | Global Forecast System |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.38560622930526733 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.3721016049385071 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/climate-change |
| keywords[14].score | 0.1121741533279419 |
| keywords[14].display_name | Climate change |
| keywords[15].id | https://openalex.org/keywords/geography |
| keywords[15].score | 0.11179482936859131 |
| keywords[15].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1126/science.adi2336 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S3880285 |
| locations[0].source.issn | 0036-8075, 1095-9203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0036-8075 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Science |
| locations[0].source.host_organization | https://openalex.org/P4310315823 |
| locations[0].source.host_organization_name | American Association for the Advancement of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315823 |
| locations[0].source.host_organization_lineage_names | American Association for the Advancement of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Science |
| locations[0].landing_page_url | https://doi.org/10.1126/science.adi2336 |
| locations[1].id | pmid:37962497 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Science (New York, N.Y.) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37962497 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5026796871 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4222-5358 |
| authorships[0].author.display_name | Rémi Lam |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[0].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[0].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[0].institutions[0].ror | https://ror.org/00971b260 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[0].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[0].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[0].institutions[1].type | company |
| authorships[0].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[0].institutions[1].country_code | GB |
| authorships[0].institutions[1].display_name | Google (United Kingdom) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Remi Lam |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[1].author.id | https://openalex.org/A5089078828 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5055-5790 |
| authorships[1].author.display_name | Álvaro Sánchez‐González |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[1].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[1].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[1].institutions[0].ror | https://ror.org/00971b260 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[1].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[1].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[1].institutions[1].type | company |
| authorships[1].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | Google (United Kingdom) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alvaro Sanchez-Gonzalez |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[2].author.id | https://openalex.org/A5011651740 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8730-1927 |
| authorships[2].author.display_name | Matthew Willson |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[2].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[2].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[2].institutions[0].ror | https://ror.org/00971b260 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[2].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[2].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[2].institutions[1].type | company |
| authorships[2].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | Google (United Kingdom) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Matthew Willson |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[3].author.id | https://openalex.org/A5037628479 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5961-5817 |
| authorships[3].author.display_name | Peter Wirnsberger |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[3].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[3].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[3].institutions[0].ror | https://ror.org/00971b260 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[3].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[3].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[3].institutions[1].type | company |
| authorships[3].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[3].institutions[1].country_code | GB |
| authorships[3].institutions[1].display_name | Google (United Kingdom) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Peter Wirnsberger |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[4].author.id | https://openalex.org/A5088815712 |
| authorships[4].author.orcid | https://orcid.org/0009-0002-7058-4657 |
| authorships[4].author.display_name | Meire Fortunato |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[4].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[4].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[4].institutions[0].ror | https://ror.org/00971b260 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[4].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[4].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[4].institutions[1].type | company |
| authorships[4].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[4].institutions[1].country_code | GB |
| authorships[4].institutions[1].display_name | Google (United Kingdom) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Meire Fortunato |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[5].author.id | https://openalex.org/A5044201500 |
| authorships[5].author.orcid | https://orcid.org/0009-0000-3059-0062 |
| authorships[5].author.display_name | Ferran Alet |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[5].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[5].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[5].institutions[0].ror | https://ror.org/00971b260 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[5].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[5].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[5].institutions[1].type | company |
| authorships[5].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[5].institutions[1].country_code | GB |
| authorships[5].institutions[1].display_name | Google (United Kingdom) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ferran Alet |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[6].author.id | https://openalex.org/A5026262869 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7481-7633 |
| authorships[6].author.display_name | Suman Ravuri |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[6].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[6].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[6].institutions[0].ror | https://ror.org/00971b260 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[6].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[6].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[6].institutions[1].type | company |
| authorships[6].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[6].institutions[1].country_code | GB |
| authorships[6].institutions[1].display_name | Google (United Kingdom) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Suman Ravuri |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[7].author.id | https://openalex.org/A5027028182 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9693-7986 |
| authorships[7].author.display_name | Timo Ewalds |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[7].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[7].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[7].institutions[0].ror | https://ror.org/00971b260 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[7].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[7].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[7].institutions[1].type | company |
| authorships[7].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[7].institutions[1].country_code | GB |
| authorships[7].institutions[1].display_name | Google (United Kingdom) |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Timo Ewalds |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[8].author.id | https://openalex.org/A5020267902 |
| authorships[8].author.orcid | https://orcid.org/0009-0002-2102-6982 |
| authorships[8].author.display_name | Zach Eaton-Rosen |
| authorships[8].countries | GB |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[8].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[8].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[8].institutions[0].ror | https://ror.org/00971b260 |
| authorships[8].institutions[0].type | company |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[8].institutions[0].country_code | GB |
| authorships[8].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[8].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[8].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[8].institutions[1].type | company |
| authorships[8].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[8].institutions[1].country_code | GB |
| authorships[8].institutions[1].display_name | Google (United Kingdom) |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Zach Eaton-Rosen |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[9].author.id | https://openalex.org/A5102025770 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-2956-2616 |
| authorships[9].author.display_name | Weihua Hu |
| authorships[9].countries | GB |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[9].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[9].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[9].institutions[0].ror | https://ror.org/00971b260 |
| authorships[9].institutions[0].type | company |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[9].institutions[0].country_code | GB |
| authorships[9].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[9].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[9].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[9].institutions[1].type | company |
| authorships[9].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[9].institutions[1].country_code | GB |
| authorships[9].institutions[1].display_name | Google (United Kingdom) |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Weihua Hu |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[10].author.id | https://openalex.org/A5013908652 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-2944-5639 |
| authorships[10].author.display_name | Alexander Merose |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[10].affiliations[0].raw_affiliation_string | Google Research, Mountain View, CA, USA. |
| authorships[10].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[10].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[10].institutions[0].type | company |
| authorships[10].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Google (United States) |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Alexander Merose |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Google Research, Mountain View, CA, USA. |
| authorships[11].author.id | https://openalex.org/A5070161680 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-5207-0380 |
| authorships[11].author.display_name | Stephan Hoyer |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[11].affiliations[0].raw_affiliation_string | Google Research, Mountain View, CA, USA. |
| authorships[11].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[11].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[11].institutions[0].type | company |
| authorships[11].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Google (United States) |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Stephan Hoyer |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Google Research, Mountain View, CA, USA. |
| authorships[12].author.id | https://openalex.org/A5032795091 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-7233-8092 |
| authorships[12].author.display_name | George Holland |
| authorships[12].countries | GB |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[12].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[12].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[12].institutions[0].ror | https://ror.org/00971b260 |
| authorships[12].institutions[0].type | company |
| authorships[12].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[12].institutions[0].country_code | GB |
| authorships[12].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[12].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[12].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[12].institutions[1].type | company |
| authorships[12].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[12].institutions[1].country_code | GB |
| authorships[12].institutions[1].display_name | Google (United Kingdom) |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | George Holland |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[13].author.id | https://openalex.org/A5003562101 |
| authorships[13].author.orcid | https://orcid.org/0000-0001-7848-7283 |
| authorships[13].author.display_name | Oriol Vinyals |
| authorships[13].countries | GB |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[13].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[13].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[13].institutions[0].ror | https://ror.org/00971b260 |
| authorships[13].institutions[0].type | company |
| authorships[13].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[13].institutions[0].country_code | GB |
| authorships[13].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[13].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[13].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[13].institutions[1].type | company |
| authorships[13].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[13].institutions[1].country_code | GB |
| authorships[13].institutions[1].display_name | Google (United Kingdom) |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Oriol Vinyals |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[14].author.id | https://openalex.org/A5068578177 |
| authorships[14].author.orcid | https://orcid.org/0009-0004-7859-3384 |
| authorships[14].author.display_name | Jacklynn Stott |
| authorships[14].countries | GB |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[14].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[14].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[14].institutions[0].ror | https://ror.org/00971b260 |
| authorships[14].institutions[0].type | company |
| authorships[14].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[14].institutions[0].country_code | GB |
| authorships[14].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[14].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[14].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[14].institutions[1].type | company |
| authorships[14].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[14].institutions[1].country_code | GB |
| authorships[14].institutions[1].display_name | Google (United Kingdom) |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Jacklynn Stott |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[15].author.id | https://openalex.org/A5062883663 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-4233-9040 |
| authorships[15].author.display_name | Alexander Pritzel |
| authorships[15].countries | GB |
| authorships[15].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[15].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[15].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[15].institutions[0].ror | https://ror.org/00971b260 |
| authorships[15].institutions[0].type | company |
| authorships[15].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[15].institutions[0].country_code | GB |
| authorships[15].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[15].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[15].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[15].institutions[1].type | company |
| authorships[15].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[15].institutions[1].country_code | GB |
| authorships[15].institutions[1].display_name | Google (United Kingdom) |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Alexander Pritzel |
| authorships[15].is_corresponding | False |
| authorships[15].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[16].author.id | https://openalex.org/A5084530286 |
| authorships[16].author.orcid | https://orcid.org/0000-0002-1184-5776 |
| authorships[16].author.display_name | Shakir Mohamed |
| authorships[16].countries | GB |
| authorships[16].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[16].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[16].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[16].institutions[0].ror | https://ror.org/00971b260 |
| authorships[16].institutions[0].type | company |
| authorships[16].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[16].institutions[0].country_code | GB |
| authorships[16].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[16].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[16].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[16].institutions[1].type | company |
| authorships[16].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[16].institutions[1].country_code | GB |
| authorships[16].institutions[1].display_name | Google (United Kingdom) |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Shakir Mohamed |
| authorships[16].is_corresponding | True |
| authorships[16].raw_affiliation_strings | Google DeepMind, London, UK. |
| authorships[17].author.id | https://openalex.org/A5059792149 |
| authorships[17].author.orcid | https://orcid.org/0000-0003-3622-7111 |
| authorships[17].author.display_name | Peter Battaglia |
| authorships[17].countries | GB |
| authorships[17].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[17].affiliations[0].raw_affiliation_string | Google DeepMind, London, UK. |
| authorships[17].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[17].institutions[0].ror | https://ror.org/00971b260 |
| authorships[17].institutions[0].type | company |
| authorships[17].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[17].institutions[0].country_code | GB |
| authorships[17].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[17].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[17].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[17].institutions[1].type | company |
| authorships[17].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[17].institutions[1].country_code | GB |
| authorships[17].institutions[1].display_name | Google (United Kingdom) |
| authorships[17].author_position | last |
| authorships[17].raw_author_name | Peter Battaglia |
| authorships[17].is_corresponding | True |
| authorships[17].raw_affiliation_strings | Google DeepMind, London, UK. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1126/science.adi2336 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning skillful medium-range global weather forecasting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10029 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Climate variability and models |
| related_works | https://openalex.org/W1969203807, https://openalex.org/W4242547728, https://openalex.org/W2157980685, https://openalex.org/W4385749727, https://openalex.org/W2321020009, https://openalex.org/W2782543925, https://openalex.org/W2921756899, https://openalex.org/W4385452328, https://openalex.org/W4385699815, https://openalex.org/W642712195 |
| cited_by_count | 800 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 441 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 331 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 27 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1126/science.adi2336 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S3880285 |
| best_oa_location.source.issn | 0036-8075, 1095-9203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0036-8075 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310315823 |
| best_oa_location.source.host_organization_name | American Association for the Advancement of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315823 |
| best_oa_location.source.host_organization_lineage_names | American Association for the Advancement of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Science |
| best_oa_location.landing_page_url | https://doi.org/10.1126/science.adi2336 |
| primary_location.id | doi:10.1126/science.adi2336 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S3880285 |
| primary_location.source.issn | 0036-8075, 1095-9203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0036-8075 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Science |
| primary_location.source.host_organization | https://openalex.org/P4310315823 |
| primary_location.source.host_organization_name | American Association for the Advancement of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315823 |
| primary_location.source.host_organization_lineage_names | American Association for the Advancement of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Science |
| primary_location.landing_page_url | https://doi.org/10.1126/science.adi2336 |
| publication_date | 2023-11-14 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2912382216, https://openalex.org/W1789155650, https://openalex.org/W4281483933, https://openalex.org/W2625614184, https://openalex.org/W3202525453, https://openalex.org/W4294068833, https://openalex.org/W3003709258, https://openalex.org/W2963973018, https://openalex.org/W3048374358, https://openalex.org/W3099145603, https://openalex.org/W4382048606, https://openalex.org/W3007913393, https://openalex.org/W3092228416, https://openalex.org/W2935949362, https://openalex.org/W3025949386, https://openalex.org/W2150355110, https://openalex.org/W6888654854, https://openalex.org/W3024583013, https://openalex.org/W6963815019, https://openalex.org/W2091361900, https://openalex.org/W2068146025, https://openalex.org/W1645858368, https://openalex.org/W6908435960, https://openalex.org/W2970999468, https://openalex.org/W2005877843, https://openalex.org/W1988726038, https://openalex.org/W2992827897, https://openalex.org/W6963649141, https://openalex.org/W1966716734, https://openalex.org/W4288042734, https://openalex.org/W2991298115, https://openalex.org/W6944576743, https://openalex.org/W2099289891, https://openalex.org/W6739901393, https://openalex.org/W2552391307, https://openalex.org/W3204829776, https://openalex.org/W2604239613, https://openalex.org/W2160615084, https://openalex.org/W2509721298, https://openalex.org/W6926361433, https://openalex.org/W6907556498, https://openalex.org/W6963635145, https://openalex.org/W2059998120, https://openalex.org/W2048561665, https://openalex.org/W2145758231, https://openalex.org/W2098552207, https://openalex.org/W6888716499, https://openalex.org/W2260074910, https://openalex.org/W4288366147, https://openalex.org/W3080366021, https://openalex.org/W4385245566, https://openalex.org/W3128661782, https://openalex.org/W2952915411, https://openalex.org/W4313407333 |
| referenced_works_count | 54 |
| abstract_inverted_index.1 | 69 |
| abstract_inverted_index.a | 43, 105 |
| abstract_inverted_index.10 | 61 |
| abstract_inverted_index.It | 52 |
| abstract_inverted_index.at | 63 |
| abstract_inverted_index.in | 67, 108 |
| abstract_inverted_index.is | 4, 104 |
| abstract_inverted_index.of | 55, 82, 119 |
| abstract_inverted_index.on | 80 |
| abstract_inverted_index.to | 6, 22, 34 |
| abstract_inverted_index.we | 40 |
| abstract_inverted_index.90% | 81 |
| abstract_inverted_index.and | 11, 86, 100, 110, 114 |
| abstract_inverted_index.but | 26 |
| abstract_inverted_index.for | 58, 122 |
| abstract_inverted_index.its | 87 |
| abstract_inverted_index.key | 106 |
| abstract_inverted_index.not | 28 |
| abstract_inverted_index.the | 36, 59, 74, 117 |
| abstract_inverted_index.use | 30 |
| abstract_inverted_index.1380 | 83 |
| abstract_inverted_index.data | 33 |
| abstract_inverted_index.days | 62 |
| abstract_inverted_index.does | 27 |
| abstract_inverted_index.from | 49 |
| abstract_inverted_index.many | 9 |
| abstract_inverted_index.most | 75 |
| abstract_inverted_index.next | 60 |
| abstract_inverted_index.uses | 18 |
| abstract_inverted_index.Here, | 39 |
| abstract_inverted_index.data. | 51 |
| abstract_inverted_index.event | 92 |
| abstract_inverted_index.helps | 115 |
| abstract_inverted_index.under | 68 |
| abstract_inverted_index.0.25° | 64 |
| abstract_inverted_index.Global | 0 |
| abstract_inverted_index.across | 8 |
| abstract_inverted_index.better | 90 |
| abstract_inverted_index.method | 46 |
| abstract_inverted_index.model. | 38 |
| abstract_inverted_index.severe | 91 |
| abstract_inverted_index.social | 10 |
| abstract_inverted_index.advance | 107 |
| abstract_inverted_index.complex | 124 |
| abstract_inverted_index.compute | 20 |
| abstract_inverted_index.cyclone | 96 |
| abstract_inverted_index.extreme | 101 |
| abstract_inverted_index.improve | 23, 35 |
| abstract_inverted_index.machine | 44, 120 |
| abstract_inverted_index.minute. | 70 |
| abstract_inverted_index.promise | 118 |
| abstract_inverted_index.realize | 116 |
| abstract_inverted_index.rivers, | 99 |
| abstract_inverted_index.support | 89 |
| abstract_inverted_index.systems | 79 |
| abstract_inverted_index.trained | 47 |
| abstract_inverted_index.weather | 2, 16, 32, 56, 112 |
| abstract_inverted_index.accuracy | 25 |
| abstract_inverted_index.accurate | 76, 109 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.directly | 29, 48 |
| abstract_inverted_index.domains. | 13 |
| abstract_inverted_index.economic | 12 |
| abstract_inverted_index.forecast | 24 |
| abstract_inverted_index.globally | 66 |
| abstract_inverted_index.hundreds | 54 |
| abstract_inverted_index.learning | 121 |
| abstract_inverted_index.modeling | 123 |
| abstract_inverted_index.predicts | 53 |
| abstract_inverted_index.systems. | 126 |
| abstract_inverted_index.targets, | 85 |
| abstract_inverted_index.tropical | 95 |
| abstract_inverted_index.GraphCast | 71, 103 |
| abstract_inverted_index.dynamical | 125 |
| abstract_inverted_index.efficient | 111 |
| abstract_inverted_index.forecasts | 88 |
| abstract_inverted_index.including | 94 |
| abstract_inverted_index.increased | 19 |
| abstract_inverted_index.introduce | 41 |
| abstract_inverted_index.numerical | 15 |
| abstract_inverted_index.resources | 21 |
| abstract_inverted_index.tracking, | 97 |
| abstract_inverted_index.variables | 57 |
| abstract_inverted_index.GraphCast, | 42 |
| abstract_inverted_index.historical | 31 |
| abstract_inverted_index.prediction | 17 |
| abstract_inverted_index.reanalysis | 50 |
| abstract_inverted_index.resolution | 65 |
| abstract_inverted_index.underlying | 37 |
| abstract_inverted_index.Traditional | 14 |
| abstract_inverted_index.atmospheric | 98 |
| abstract_inverted_index.forecasting | 3, 113 |
| abstract_inverted_index.operational | 77 |
| abstract_inverted_index.outperforms | 73 |
| abstract_inverted_index.prediction, | 93 |
| abstract_inverted_index.medium-range | 1 |
| abstract_inverted_index.verification | 84 |
| abstract_inverted_index.deterministic | 78 |
| abstract_inverted_index.significantly | 72 |
| abstract_inverted_index.temperatures. | 102 |
| abstract_inverted_index.decision-making | 7 |
| abstract_inverted_index.learning–based | 45 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5089078828, https://openalex.org/A5026796871, https://openalex.org/A5044201500, https://openalex.org/A5084530286, https://openalex.org/A5059792149, https://openalex.org/A5026262869, https://openalex.org/A5088815712, https://openalex.org/A5037628479, https://openalex.org/A5011651740 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 18 |
| corresponding_institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.99997147 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |