Learning Sparse Rewarded Tasks from Sub-Optimal Demonstrations Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2004.00530
Model-free deep reinforcement learning (RL) has demonstrated its superiority on many complex sequential decision-making problems. However, heavy dependence on dense rewards and high sample-complexity impedes the wide adoption of these methods in real-world scenarios. On the other hand, imitation learning (IL) learns effectively in sparse-rewarded tasks by leveraging the existing expert demonstrations. In practice, collecting a sufficient amount of expert demonstrations can be prohibitively expensive, and the quality of demonstrations typically limits the performance of the learning policy. In this work, we propose Self-Adaptive Imitation Learning (SAIL) that can achieve (near) optimal performance given only a limited number of sub-optimal demonstrations for highly challenging sparse reward tasks. SAIL bridges the advantages of IL and RL to reduce the sample complexity substantially, by effectively exploiting sup-optimal demonstrations and efficiently exploring the environment to surpass the demonstrated performance. Extensive empirical results show that not only does SAIL significantly improve the sample-efficiency but also leads to much better final performance across different continuous control tasks, comparing to the state-of-the-art.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2004.00530
- https://arxiv.org/pdf/2004.00530
- OA Status
- green
- Cited By
- 11
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3015024584
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3015024584Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2004.00530Digital Object Identifier
- Title
-
Learning Sparse Rewarded Tasks from Sub-Optimal DemonstrationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-01Full publication date if available
- Authors
-
Zhuangdi Zhu, Kaixiang Lin, Bo Dai, Jiayu ZhouList of authors in order
- Landing page
-
https://arxiv.org/abs/2004.00530Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2004.00530Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2004.00530Direct OA link when available
- Concepts
-
Computer science, Reinforcement learning, Sample complexity, Sample (material), Machine learning, Artificial intelligence, Imitation, Quality (philosophy), Epistemology, Chromatography, Chemistry, Social psychology, Philosophy, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2, 2023: 1, 2021: 4, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3015024584 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2004.00530 |
| ids.doi | https://doi.org/10.48550/arxiv.2004.00530 |
| ids.mag | 3015024584 |
| ids.openalex | https://openalex.org/W3015024584 |
| fwci | |
| type | preprint |
| title | Learning Sparse Rewarded Tasks from Sub-Optimal Demonstrations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10462 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Reinforcement Learning in Robotics |
| topics[1].id | https://openalex.org/T10653 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9818999767303467 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Robot Manipulation and Learning |
| topics[2].id | https://openalex.org/T11689 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9747999906539917 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8067103624343872 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7974528074264526 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C2778445095 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5828008651733398 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q18354077 |
| concepts[2].display_name | Sample complexity |
| concepts[3].id | https://openalex.org/C198531522 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5690864324569702 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[3].display_name | Sample (material) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5610243082046509 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5609663128852844 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C126388530 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5196308493614197 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1131737 |
| concepts[6].display_name | Imitation |
| concepts[7].id | https://openalex.org/C2779530757 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46034979820251465 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[7].display_name | Quality (philosophy) |
| concepts[8].id | https://openalex.org/C111472728 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[8].display_name | Epistemology |
| concepts[9].id | https://openalex.org/C43617362 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[9].display_name | Chromatography |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C77805123 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[11].display_name | Social psychology |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8067103624343872 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.7974528074264526 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/sample-complexity |
| keywords[2].score | 0.5828008651733398 |
| keywords[2].display_name | Sample complexity |
| keywords[3].id | https://openalex.org/keywords/sample |
| keywords[3].score | 0.5690864324569702 |
| keywords[3].display_name | Sample (material) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5610243082046509 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5609663128852844 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/imitation |
| keywords[6].score | 0.5196308493614197 |
| keywords[6].display_name | Imitation |
| keywords[7].id | https://openalex.org/keywords/quality |
| keywords[7].score | 0.46034979820251465 |
| keywords[7].display_name | Quality (philosophy) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2004.00530 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2004.00530 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2004.00530 |
| locations[1].id | doi:10.48550/arxiv.2004.00530 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2004.00530 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5079428801 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7418-731X |
| authorships[0].author.display_name | Zhuangdi Zhu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I87216513 |
| authorships[0].affiliations[0].raw_affiliation_string | Michigan State University |
| authorships[0].institutions[0].id | https://openalex.org/I87216513 |
| authorships[0].institutions[0].ror | https://ror.org/05hs6h993 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I87216513 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Michigan State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhuangdi Zhu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Michigan State University |
| authorships[1].author.id | https://openalex.org/A5100443077 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8626-8934 |
| authorships[1].author.display_name | Kaixiang Lin |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I87216513 |
| authorships[1].affiliations[0].raw_affiliation_string | Michigan State University |
| authorships[1].institutions[0].id | https://openalex.org/I87216513 |
| authorships[1].institutions[0].ror | https://ror.org/05hs6h993 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I87216513 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Michigan State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kaixiang Lin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Michigan State University |
| authorships[2].author.id | https://openalex.org/A5101990494 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0866-447X |
| authorships[2].author.display_name | Bo Dai |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I87216513 |
| authorships[2].affiliations[0].raw_affiliation_string | Michigan State University |
| authorships[2].institutions[0].id | https://openalex.org/I87216513 |
| authorships[2].institutions[0].ror | https://ror.org/05hs6h993 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I87216513 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Michigan State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bo Dai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Michigan State University |
| authorships[3].author.id | https://openalex.org/A5047215778 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4336-6777 |
| authorships[3].author.display_name | Jiayu Zhou |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[3].affiliations[0].raw_affiliation_string | Google,,,,, |
| authorships[3].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[3].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Google (United States) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jiayu Zhou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Google,,,,, |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2004.00530 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Sparse Rewarded Tasks from Sub-Optimal Demonstrations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10462 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Reinforcement Learning in Robotics |
| related_works | https://openalex.org/W3183948672, https://openalex.org/W2607437843, https://openalex.org/W4295700147, https://openalex.org/W2963162727, https://openalex.org/W2877093712, https://openalex.org/W2116157560, https://openalex.org/W2106714532, https://openalex.org/W4297979791, https://openalex.org/W4310614650, https://openalex.org/W4386738330 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2004.00530 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2004.00530 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2004.00530 |
| primary_location.id | pmh:oai:arXiv.org:2004.00530 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2004.00530 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2004.00530 |
| publication_date | 2020-04-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2995411906, https://openalex.org/W2962957031, https://openalex.org/W2971262355, https://openalex.org/W1771410628, https://openalex.org/W2099471712, https://openalex.org/W2911383979, https://openalex.org/W2899205164, https://openalex.org/W2741122588, https://openalex.org/W2121863487, https://openalex.org/W2803616302, https://openalex.org/W2165150801, https://openalex.org/W2766447205, https://openalex.org/W2963376229, https://openalex.org/W1999874108, https://openalex.org/W2098774185, https://openalex.org/W2766610320, https://openalex.org/W2594640072, https://openalex.org/W2964120017, https://openalex.org/W2994977742, https://openalex.org/W2963099939, https://openalex.org/W2787938642, https://openalex.org/W2805805280, https://openalex.org/W2575705757, https://openalex.org/W2166302491, https://openalex.org/W2145339207, https://openalex.org/W2963864421, https://openalex.org/W2963800509, https://openalex.org/W2963277051, https://openalex.org/W2113023245, https://openalex.org/W2945023859, https://openalex.org/W2133552775, https://openalex.org/W2147544021 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 55, 95 |
| abstract_inverted_index.IL | 112 |
| abstract_inverted_index.In | 52, 78 |
| abstract_inverted_index.On | 34 |
| abstract_inverted_index.RL | 114 |
| abstract_inverted_index.be | 62 |
| abstract_inverted_index.by | 46, 121 |
| abstract_inverted_index.in | 31, 43 |
| abstract_inverted_index.of | 28, 58, 68, 74, 98, 111 |
| abstract_inverted_index.on | 9, 18 |
| abstract_inverted_index.to | 115, 131, 152, 163 |
| abstract_inverted_index.we | 81 |
| abstract_inverted_index.and | 21, 65, 113, 126 |
| abstract_inverted_index.but | 149 |
| abstract_inverted_index.can | 61, 88 |
| abstract_inverted_index.for | 101 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.its | 7 |
| abstract_inverted_index.not | 141 |
| abstract_inverted_index.the | 25, 35, 48, 66, 72, 75, 109, 117, 129, 133, 147, 164 |
| abstract_inverted_index.(IL) | 40 |
| abstract_inverted_index.(RL) | 4 |
| abstract_inverted_index.SAIL | 107, 144 |
| abstract_inverted_index.also | 150 |
| abstract_inverted_index.deep | 1 |
| abstract_inverted_index.does | 143 |
| abstract_inverted_index.high | 22 |
| abstract_inverted_index.many | 10 |
| abstract_inverted_index.much | 153 |
| abstract_inverted_index.only | 94, 142 |
| abstract_inverted_index.show | 139 |
| abstract_inverted_index.that | 87, 140 |
| abstract_inverted_index.this | 79 |
| abstract_inverted_index.wide | 26 |
| abstract_inverted_index.dense | 19 |
| abstract_inverted_index.final | 155 |
| abstract_inverted_index.given | 93 |
| abstract_inverted_index.hand, | 37 |
| abstract_inverted_index.heavy | 16 |
| abstract_inverted_index.leads | 151 |
| abstract_inverted_index.other | 36 |
| abstract_inverted_index.tasks | 45 |
| abstract_inverted_index.these | 29 |
| abstract_inverted_index.work, | 80 |
| abstract_inverted_index.(SAIL) | 86 |
| abstract_inverted_index.(near) | 90 |
| abstract_inverted_index.across | 157 |
| abstract_inverted_index.amount | 57 |
| abstract_inverted_index.better | 154 |
| abstract_inverted_index.expert | 50, 59 |
| abstract_inverted_index.highly | 102 |
| abstract_inverted_index.learns | 41 |
| abstract_inverted_index.limits | 71 |
| abstract_inverted_index.number | 97 |
| abstract_inverted_index.reduce | 116 |
| abstract_inverted_index.reward | 105 |
| abstract_inverted_index.sample | 118 |
| abstract_inverted_index.sparse | 104 |
| abstract_inverted_index.tasks, | 161 |
| abstract_inverted_index.tasks. | 106 |
| abstract_inverted_index.achieve | 89 |
| abstract_inverted_index.bridges | 108 |
| abstract_inverted_index.complex | 11 |
| abstract_inverted_index.control | 160 |
| abstract_inverted_index.impedes | 24 |
| abstract_inverted_index.improve | 146 |
| abstract_inverted_index.limited | 96 |
| abstract_inverted_index.methods | 30 |
| abstract_inverted_index.optimal | 91 |
| abstract_inverted_index.policy. | 77 |
| abstract_inverted_index.propose | 82 |
| abstract_inverted_index.quality | 67 |
| abstract_inverted_index.results | 138 |
| abstract_inverted_index.rewards | 20 |
| abstract_inverted_index.surpass | 132 |
| abstract_inverted_index.However, | 15 |
| abstract_inverted_index.Learning | 85 |
| abstract_inverted_index.adoption | 27 |
| abstract_inverted_index.existing | 49 |
| abstract_inverted_index.learning | 3, 39, 76 |
| abstract_inverted_index.Extensive | 136 |
| abstract_inverted_index.Imitation | 84 |
| abstract_inverted_index.comparing | 162 |
| abstract_inverted_index.different | 158 |
| abstract_inverted_index.empirical | 137 |
| abstract_inverted_index.exploring | 128 |
| abstract_inverted_index.imitation | 38 |
| abstract_inverted_index.practice, | 53 |
| abstract_inverted_index.problems. | 14 |
| abstract_inverted_index.typically | 70 |
| abstract_inverted_index.Model-free | 0 |
| abstract_inverted_index.advantages | 110 |
| abstract_inverted_index.collecting | 54 |
| abstract_inverted_index.complexity | 119 |
| abstract_inverted_index.continuous | 159 |
| abstract_inverted_index.dependence | 17 |
| abstract_inverted_index.expensive, | 64 |
| abstract_inverted_index.exploiting | 123 |
| abstract_inverted_index.leveraging | 47 |
| abstract_inverted_index.real-world | 32 |
| abstract_inverted_index.scenarios. | 33 |
| abstract_inverted_index.sequential | 12 |
| abstract_inverted_index.sufficient | 56 |
| abstract_inverted_index.challenging | 103 |
| abstract_inverted_index.effectively | 42, 122 |
| abstract_inverted_index.efficiently | 127 |
| abstract_inverted_index.environment | 130 |
| abstract_inverted_index.performance | 73, 92, 156 |
| abstract_inverted_index.sub-optimal | 99 |
| abstract_inverted_index.sup-optimal | 124 |
| abstract_inverted_index.superiority | 8 |
| abstract_inverted_index.demonstrated | 6, 134 |
| abstract_inverted_index.performance. | 135 |
| abstract_inverted_index.Self-Adaptive | 83 |
| abstract_inverted_index.prohibitively | 63 |
| abstract_inverted_index.reinforcement | 2 |
| abstract_inverted_index.significantly | 145 |
| abstract_inverted_index.demonstrations | 60, 69, 100, 125 |
| abstract_inverted_index.substantially, | 120 |
| abstract_inverted_index.decision-making | 13 |
| abstract_inverted_index.demonstrations. | 51 |
| abstract_inverted_index.sparse-rewarded | 44 |
| abstract_inverted_index.sample-complexity | 23 |
| abstract_inverted_index.sample-efficiency | 148 |
| abstract_inverted_index.state-of-the-art. | 165 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |