Learning Structural Causal Models from Ordering: Identifiable Flow Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v39i17.33961
In this study, we address causal inference when only observational data and a valid causal ordering from the causal graph are available. We introduce a set of flow models that can recover component-wise, invertible transformation of exogenous variables. Our flow-based methods offer flexible model design while maintaining causal consistency regardless of the number of discretization steps. We propose design improvements that enable simultaneous learning of all causal mechanisms and reduce abduction and prediction complexity to linear O(n) relative to the number of layers, independent of the number of causal variables. Empirically, we demonstrate that our method outperforms previous state-of-the-art approaches and delivers consistent performance across a wide range of structural causal models in answering observational, interventional, and counterfactual questions. Additionally, our method achieves a significant reduction in computational time compared to existing diffusion-based techniques, making it practical for large structural causal models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v39i17.33961
- https://ojs.aaai.org/index.php/AAAI/article/download/33961/36116
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409347520
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409347520Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v39i17.33961Digital Object Identifier
- Title
-
Learning Structural Causal Models from Ordering: Identifiable Flow ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-11Full publication date if available
- Authors
-
Minh Le, Kien Do, Truyen TranList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v39i17.33961Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/33961/36116Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/33961/36116Direct OA link when available
- Concepts
-
Flow (mathematics), Statistical physics, Computer science, Mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409347520 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v39i17.33961 |
| ids.doi | https://doi.org/10.1609/aaai.v39i17.33961 |
| ids.openalex | https://openalex.org/W4409347520 |
| fwci | 0.0 |
| type | article |
| title | Learning Structural Causal Models from Ordering: Identifiable Flow Models |
| biblio.issue | 17 |
| biblio.volume | 39 |
| biblio.last_page | 17839 |
| biblio.first_page | 17831 |
| topics[0].id | https://openalex.org/T11303 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8955000042915344 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Modeling and Causal Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C38349280 |
| concepts[0].level | 2 |
| concepts[0].score | 0.4908314645290375 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[0].display_name | Flow (mathematics) |
| concepts[1].id | https://openalex.org/C121864883 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3623863756656647 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[1].display_name | Statistical physics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.36053013801574707 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C57879066 |
| concepts[3].level | 1 |
| concepts[3].score | 0.2019951343536377 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q41217 |
| concepts[3].display_name | Mechanics |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.13907364010810852 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/flow |
| keywords[0].score | 0.4908314645290375 |
| keywords[0].display_name | Flow (mathematics) |
| keywords[1].id | https://openalex.org/keywords/statistical-physics |
| keywords[1].score | 0.3623863756656647 |
| keywords[1].display_name | Statistical physics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.36053013801574707 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mechanics |
| keywords[3].score | 0.2019951343536377 |
| keywords[3].display_name | Mechanics |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.13907364010810852 |
| keywords[4].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1609/aaai.v39i17.33961 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/33961/36116 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v39i17.33961 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5016537664 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0684-6408 |
| authorships[0].author.display_name | Minh Le |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Minh Khoa Le |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5001806269 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0119-122X |
| authorships[1].author.display_name | Kien Do |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kien Do |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085471517 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6531-8907 |
| authorships[2].author.display_name | Truyen Tran |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Truyen Tran |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/33961/36116 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Structural Causal Models from Ordering: Identifiable Flow Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11303 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8955000042915344 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Modeling and Causal Inference |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v39i17.33961 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/33961/36116 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v39i17.33961 |
| primary_location.id | doi:10.1609/aaai.v39i17.33961 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/33961/36116 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v39i17.33961 |
| publication_date | 2025-04-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 24, 105, 123 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 22, 56 |
| abstract_inverted_index.in | 112, 126 |
| abstract_inverted_index.it | 135 |
| abstract_inverted_index.of | 26, 35, 50, 53, 64, 81, 84, 87, 108 |
| abstract_inverted_index.to | 74, 78, 130 |
| abstract_inverted_index.we | 3, 91 |
| abstract_inverted_index.Our | 38 |
| abstract_inverted_index.all | 65 |
| abstract_inverted_index.and | 11, 68, 71, 100, 116 |
| abstract_inverted_index.are | 20 |
| abstract_inverted_index.can | 30 |
| abstract_inverted_index.for | 137 |
| abstract_inverted_index.our | 94, 120 |
| abstract_inverted_index.set | 25 |
| abstract_inverted_index.the | 17, 51, 79, 85 |
| abstract_inverted_index.O(n) | 76 |
| abstract_inverted_index.data | 10 |
| abstract_inverted_index.flow | 27 |
| abstract_inverted_index.from | 16 |
| abstract_inverted_index.only | 8 |
| abstract_inverted_index.that | 29, 60, 93 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.time | 128 |
| abstract_inverted_index.when | 7 |
| abstract_inverted_index.wide | 106 |
| abstract_inverted_index.graph | 19 |
| abstract_inverted_index.large | 138 |
| abstract_inverted_index.model | 43 |
| abstract_inverted_index.offer | 41 |
| abstract_inverted_index.range | 107 |
| abstract_inverted_index.valid | 13 |
| abstract_inverted_index.while | 45 |
| abstract_inverted_index.across | 104 |
| abstract_inverted_index.causal | 5, 14, 18, 47, 66, 88, 110, 140 |
| abstract_inverted_index.design | 44, 58 |
| abstract_inverted_index.enable | 61 |
| abstract_inverted_index.linear | 75 |
| abstract_inverted_index.making | 134 |
| abstract_inverted_index.method | 95, 121 |
| abstract_inverted_index.models | 28, 111 |
| abstract_inverted_index.number | 52, 80, 86 |
| abstract_inverted_index.reduce | 69 |
| abstract_inverted_index.steps. | 55 |
| abstract_inverted_index.study, | 2 |
| abstract_inverted_index.address | 4 |
| abstract_inverted_index.layers, | 82 |
| abstract_inverted_index.methods | 40 |
| abstract_inverted_index.models. | 141 |
| abstract_inverted_index.propose | 57 |
| abstract_inverted_index.recover | 31 |
| abstract_inverted_index.achieves | 122 |
| abstract_inverted_index.compared | 129 |
| abstract_inverted_index.delivers | 101 |
| abstract_inverted_index.existing | 131 |
| abstract_inverted_index.flexible | 42 |
| abstract_inverted_index.learning | 63 |
| abstract_inverted_index.ordering | 15 |
| abstract_inverted_index.previous | 97 |
| abstract_inverted_index.relative | 77 |
| abstract_inverted_index.abduction | 70 |
| abstract_inverted_index.answering | 113 |
| abstract_inverted_index.exogenous | 36 |
| abstract_inverted_index.inference | 6 |
| abstract_inverted_index.introduce | 23 |
| abstract_inverted_index.practical | 136 |
| abstract_inverted_index.reduction | 125 |
| abstract_inverted_index.approaches | 99 |
| abstract_inverted_index.available. | 21 |
| abstract_inverted_index.complexity | 73 |
| abstract_inverted_index.consistent | 102 |
| abstract_inverted_index.flow-based | 39 |
| abstract_inverted_index.invertible | 33 |
| abstract_inverted_index.mechanisms | 67 |
| abstract_inverted_index.prediction | 72 |
| abstract_inverted_index.questions. | 118 |
| abstract_inverted_index.regardless | 49 |
| abstract_inverted_index.structural | 109, 139 |
| abstract_inverted_index.variables. | 37, 89 |
| abstract_inverted_index.consistency | 48 |
| abstract_inverted_index.demonstrate | 92 |
| abstract_inverted_index.independent | 83 |
| abstract_inverted_index.maintaining | 46 |
| abstract_inverted_index.outperforms | 96 |
| abstract_inverted_index.performance | 103 |
| abstract_inverted_index.significant | 124 |
| abstract_inverted_index.techniques, | 133 |
| abstract_inverted_index.Empirically, | 90 |
| abstract_inverted_index.improvements | 59 |
| abstract_inverted_index.simultaneous | 62 |
| abstract_inverted_index.Additionally, | 119 |
| abstract_inverted_index.computational | 127 |
| abstract_inverted_index.observational | 9 |
| abstract_inverted_index.counterfactual | 117 |
| abstract_inverted_index.discretization | 54 |
| abstract_inverted_index.observational, | 114 |
| abstract_inverted_index.transformation | 34 |
| abstract_inverted_index.component-wise, | 32 |
| abstract_inverted_index.diffusion-based | 132 |
| abstract_inverted_index.interventional, | 115 |
| abstract_inverted_index.state-of-the-art | 98 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.07839196 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |