Learning the Positions in CountSketch Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.06611
We consider sketching algorithms which first compress data by multiplication with a random sketch matrix, and then apply the sketch to quickly solve an optimization problem, e.g., low-rank approximation and regression. In the learning-based sketching paradigm proposed by~\cite{indyk2019learning}, the sketch matrix is found by choosing a random sparse matrix, e.g., CountSketch, and then the values of its non-zero entries are updated by running gradient descent on a training data set. Despite the growing body of work on this paradigm, a noticeable omission is that the locations of the non-zero entries of previous algorithms were fixed, and only their values were learned. In this work, we propose the first learning-based algorithms that also optimize the locations of the non-zero entries. Our first proposed algorithm is based on a greedy algorithm. However, one drawback of the greedy algorithm is its slower training time. We fix this issue and propose approaches for learning a sketching matrix for both low-rank approximation and Hessian approximation for second order optimization. The latter is helpful for a range of constrained optimization problems, such as LASSO and matrix estimation with a nuclear norm constraint. Both approaches achieve good accuracy with a fast running time. Moreover, our experiments suggest that our algorithm can still reduce the error significantly even if we only have a very limited number of training matrices.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.06611
- https://arxiv.org/pdf/2306.06611
- OA Status
- green
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3167284867
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3167284867Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.06611Digital Object Identifier
- Title
-
Learning the Positions in CountSketchWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-11Full publication date if available
- Authors
-
Simin Liu, Tianrui Liu, Ali Vakilian, Yulin Wan, David P. WoodruffList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.06611Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.06611Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.06611Direct OA link when available
- Concepts
-
Sketch, Hessian matrix, Computer science, Greedy algorithm, Algorithm, Matrix (chemical analysis), Matrix norm, Gradient descent, Constraint (computer-aided design), Mathematical optimization, Optimization problem, Norm (philosophy), Artificial intelligence, Mathematics, Applied mathematics, Physics, Geometry, Composite material, Artificial neural network, Eigenvalues and eigenvectors, Political science, Quantum mechanics, Law, Materials scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3167284867 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.06611 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.06611 |
| ids.mag | 3167284867 |
| ids.openalex | https://openalex.org/W3167284867 |
| fwci | |
| type | preprint |
| title | Learning the Positions in CountSketch |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11612 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Stochastic Gradient Optimization Techniques |
| topics[1].id | https://openalex.org/T10500 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Sparse and Compressive Sensing Techniques |
| topics[2].id | https://openalex.org/T12072 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9975000023841858 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779231336 |
| concepts[0].level | 2 |
| concepts[0].score | 0.690967321395874 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7534724 |
| concepts[0].display_name | Sketch |
| concepts[1].id | https://openalex.org/C203616005 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6885330677032471 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q620495 |
| concepts[1].display_name | Hessian matrix |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.614916205406189 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C51823790 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5163277983665466 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q504353 |
| concepts[3].display_name | Greedy algorithm |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5106599926948547 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C106487976 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46552035212516785 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[5].display_name | Matrix (chemical analysis) |
| concepts[6].id | https://openalex.org/C92207270 |
| concepts[6].level | 3 |
| concepts[6].score | 0.45591673254966736 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q939253 |
| concepts[6].display_name | Matrix norm |
| concepts[7].id | https://openalex.org/C153258448 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4426809549331665 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1199743 |
| concepts[7].display_name | Gradient descent |
| concepts[8].id | https://openalex.org/C2776036281 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4367330074310303 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q48769818 |
| concepts[8].display_name | Constraint (computer-aided design) |
| concepts[9].id | https://openalex.org/C126255220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4365711510181427 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[9].display_name | Mathematical optimization |
| concepts[10].id | https://openalex.org/C137836250 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41558361053466797 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[10].display_name | Optimization problem |
| concepts[11].id | https://openalex.org/C191795146 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41274648904800415 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3878446 |
| concepts[11].display_name | Norm (philosophy) |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.37078970670700073 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.33164650201797485 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C28826006 |
| concepts[14].level | 1 |
| concepts[14].score | 0.12582913041114807 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[14].display_name | Applied mathematics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C159985019 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[17].display_name | Composite material |
| concepts[18].id | https://openalex.org/C50644808 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[18].display_name | Artificial neural network |
| concepts[19].id | https://openalex.org/C158693339 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[19].display_name | Eigenvalues and eigenvectors |
| concepts[20].id | https://openalex.org/C17744445 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[20].display_name | Political science |
| concepts[21].id | https://openalex.org/C62520636 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[21].display_name | Quantum mechanics |
| concepts[22].id | https://openalex.org/C199539241 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[22].display_name | Law |
| concepts[23].id | https://openalex.org/C192562407 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[23].display_name | Materials science |
| keywords[0].id | https://openalex.org/keywords/sketch |
| keywords[0].score | 0.690967321395874 |
| keywords[0].display_name | Sketch |
| keywords[1].id | https://openalex.org/keywords/hessian-matrix |
| keywords[1].score | 0.6885330677032471 |
| keywords[1].display_name | Hessian matrix |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.614916205406189 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/greedy-algorithm |
| keywords[3].score | 0.5163277983665466 |
| keywords[3].display_name | Greedy algorithm |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.5106599926948547 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/matrix |
| keywords[5].score | 0.46552035212516785 |
| keywords[5].display_name | Matrix (chemical analysis) |
| keywords[6].id | https://openalex.org/keywords/matrix-norm |
| keywords[6].score | 0.45591673254966736 |
| keywords[6].display_name | Matrix norm |
| keywords[7].id | https://openalex.org/keywords/gradient-descent |
| keywords[7].score | 0.4426809549331665 |
| keywords[7].display_name | Gradient descent |
| keywords[8].id | https://openalex.org/keywords/constraint |
| keywords[8].score | 0.4367330074310303 |
| keywords[8].display_name | Constraint (computer-aided design) |
| keywords[9].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[9].score | 0.4365711510181427 |
| keywords[9].display_name | Mathematical optimization |
| keywords[10].id | https://openalex.org/keywords/optimization-problem |
| keywords[10].score | 0.41558361053466797 |
| keywords[10].display_name | Optimization problem |
| keywords[11].id | https://openalex.org/keywords/norm |
| keywords[11].score | 0.41274648904800415 |
| keywords[11].display_name | Norm (philosophy) |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.37078970670700073 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.33164650201797485 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/applied-mathematics |
| keywords[14].score | 0.12582913041114807 |
| keywords[14].display_name | Applied mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.06611 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.06611 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.06611 |
| locations[1].id | doi:10.48550/arxiv.2306.06611 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.06611 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100607135 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2098-3844 |
| authorships[0].author.display_name | Simin Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Simin Liu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102949546 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7926-3310 |
| authorships[1].author.display_name | Tianrui Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tianrui Liu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5052582756 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5049-7594 |
| authorships[2].author.display_name | Ali Vakilian |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ali Vakilian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5023141833 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yulin Wan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yulin Wan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102861589 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2158-1380 |
| authorships[4].author.display_name | David P. Woodruff |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | David P. Woodruff |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.06611 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-06-22T00:00:00 |
| display_name | Learning the Positions in CountSketch |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11612 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Stochastic Gradient Optimization Techniques |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W3183948672, https://openalex.org/W3173606202, https://openalex.org/W3110381201, https://openalex.org/W2948807893, https://openalex.org/W2778153218, https://openalex.org/W2758277628, https://openalex.org/W1531601525, https://openalex.org/W2355987247, https://openalex.org/W4297883503 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.06611 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.06611 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.06611 |
| primary_location.id | pmh:oai:arXiv.org:2306.06611 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.06611 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.06611 |
| publication_date | 2023-06-11 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2913031009, https://openalex.org/W2996022682, https://openalex.org/W2134342155, https://openalex.org/W3171504606, https://openalex.org/W2155461593, https://openalex.org/W2580753685, https://openalex.org/W2154249783, https://openalex.org/W2970877313, https://openalex.org/W2137825973, https://openalex.org/W2229238337, https://openalex.org/W2962777529, https://openalex.org/W3015311529, https://openalex.org/W2809907875 |
| referenced_works_count | 13 |
| abstract_inverted_index.a | 11, 45, 66, 79, 126, 150, 169, 182, 192, 214 |
| abstract_inverted_index.In | 31, 101 |
| abstract_inverted_index.We | 0, 141 |
| abstract_inverted_index.an | 23 |
| abstract_inverted_index.as | 176 |
| abstract_inverted_index.by | 8, 43, 61 |
| abstract_inverted_index.if | 210 |
| abstract_inverted_index.is | 41, 82, 123, 136, 166 |
| abstract_inverted_index.of | 55, 74, 86, 90, 115, 132, 171, 218 |
| abstract_inverted_index.on | 65, 76, 125 |
| abstract_inverted_index.to | 20 |
| abstract_inverted_index.we | 104, 211 |
| abstract_inverted_index.Our | 119 |
| abstract_inverted_index.The | 164 |
| abstract_inverted_index.and | 15, 29, 51, 95, 145, 157, 178 |
| abstract_inverted_index.are | 59 |
| abstract_inverted_index.can | 203 |
| abstract_inverted_index.fix | 142 |
| abstract_inverted_index.for | 148, 153, 160, 168 |
| abstract_inverted_index.its | 56, 137 |
| abstract_inverted_index.one | 130 |
| abstract_inverted_index.our | 197, 201 |
| abstract_inverted_index.the | 18, 32, 38, 53, 71, 84, 87, 106, 113, 116, 133, 206 |
| abstract_inverted_index.Both | 186 |
| abstract_inverted_index.also | 111 |
| abstract_inverted_index.body | 73 |
| abstract_inverted_index.both | 154 |
| abstract_inverted_index.data | 7, 68 |
| abstract_inverted_index.even | 209 |
| abstract_inverted_index.fast | 193 |
| abstract_inverted_index.good | 189 |
| abstract_inverted_index.have | 213 |
| abstract_inverted_index.norm | 184 |
| abstract_inverted_index.only | 96, 212 |
| abstract_inverted_index.set. | 69 |
| abstract_inverted_index.such | 175 |
| abstract_inverted_index.that | 83, 110, 200 |
| abstract_inverted_index.then | 16, 52 |
| abstract_inverted_index.this | 77, 102, 143 |
| abstract_inverted_index.very | 215 |
| abstract_inverted_index.were | 93, 99 |
| abstract_inverted_index.with | 10, 181, 191 |
| abstract_inverted_index.work | 75 |
| abstract_inverted_index.LASSO | 177 |
| abstract_inverted_index.apply | 17 |
| abstract_inverted_index.based | 124 |
| abstract_inverted_index.e.g., | 26, 49 |
| abstract_inverted_index.error | 207 |
| abstract_inverted_index.first | 5, 107, 120 |
| abstract_inverted_index.found | 42 |
| abstract_inverted_index.issue | 144 |
| abstract_inverted_index.order | 162 |
| abstract_inverted_index.range | 170 |
| abstract_inverted_index.solve | 22 |
| abstract_inverted_index.still | 204 |
| abstract_inverted_index.their | 97 |
| abstract_inverted_index.time. | 140, 195 |
| abstract_inverted_index.which | 4 |
| abstract_inverted_index.work, | 103 |
| abstract_inverted_index.fixed, | 94 |
| abstract_inverted_index.greedy | 127, 134 |
| abstract_inverted_index.latter | 165 |
| abstract_inverted_index.matrix | 40, 152, 179 |
| abstract_inverted_index.number | 217 |
| abstract_inverted_index.random | 12, 46 |
| abstract_inverted_index.reduce | 205 |
| abstract_inverted_index.second | 161 |
| abstract_inverted_index.sketch | 13, 19, 39 |
| abstract_inverted_index.slower | 138 |
| abstract_inverted_index.sparse | 47 |
| abstract_inverted_index.values | 54, 98 |
| abstract_inverted_index.Despite | 70 |
| abstract_inverted_index.Hessian | 158 |
| abstract_inverted_index.achieve | 188 |
| abstract_inverted_index.descent | 64 |
| abstract_inverted_index.entries | 58, 89 |
| abstract_inverted_index.growing | 72 |
| abstract_inverted_index.helpful | 167 |
| abstract_inverted_index.limited | 216 |
| abstract_inverted_index.matrix, | 14, 48 |
| abstract_inverted_index.nuclear | 183 |
| abstract_inverted_index.propose | 105, 146 |
| abstract_inverted_index.quickly | 21 |
| abstract_inverted_index.running | 62, 194 |
| abstract_inverted_index.suggest | 199 |
| abstract_inverted_index.updated | 60 |
| abstract_inverted_index.However, | 129 |
| abstract_inverted_index.accuracy | 190 |
| abstract_inverted_index.choosing | 44 |
| abstract_inverted_index.compress | 6 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.drawback | 131 |
| abstract_inverted_index.entries. | 118 |
| abstract_inverted_index.gradient | 63 |
| abstract_inverted_index.learned. | 100 |
| abstract_inverted_index.learning | 149 |
| abstract_inverted_index.low-rank | 27, 155 |
| abstract_inverted_index.non-zero | 57, 88, 117 |
| abstract_inverted_index.omission | 81 |
| abstract_inverted_index.optimize | 112 |
| abstract_inverted_index.paradigm | 35 |
| abstract_inverted_index.previous | 91 |
| abstract_inverted_index.problem, | 25 |
| abstract_inverted_index.proposed | 36, 121 |
| abstract_inverted_index.training | 67, 139, 219 |
| abstract_inverted_index.Moreover, | 196 |
| abstract_inverted_index.algorithm | 122, 135, 202 |
| abstract_inverted_index.locations | 85, 114 |
| abstract_inverted_index.matrices. | 220 |
| abstract_inverted_index.paradigm, | 78 |
| abstract_inverted_index.problems, | 174 |
| abstract_inverted_index.sketching | 2, 34, 151 |
| abstract_inverted_index.algorithm. | 128 |
| abstract_inverted_index.algorithms | 3, 92, 109 |
| abstract_inverted_index.approaches | 147, 187 |
| abstract_inverted_index.estimation | 180 |
| abstract_inverted_index.noticeable | 80 |
| abstract_inverted_index.constrained | 172 |
| abstract_inverted_index.constraint. | 185 |
| abstract_inverted_index.experiments | 198 |
| abstract_inverted_index.regression. | 30 |
| abstract_inverted_index.CountSketch, | 50 |
| abstract_inverted_index.optimization | 24, 173 |
| abstract_inverted_index.approximation | 28, 156, 159 |
| abstract_inverted_index.optimization. | 163 |
| abstract_inverted_index.significantly | 208 |
| abstract_inverted_index.learning-based | 33, 108 |
| abstract_inverted_index.multiplication | 9 |
| abstract_inverted_index.by~\cite{indyk2019learning}, | 37 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |