Learning to Mitigate Post-Outage Load Surges: A Data-Driven Framework for Electrifying and Decarbonizing Grids Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.08357
Electrification and decarbonization are transforming power system demand and recovery dynamics, yet their implications for post-outage load surges remain poorly understood. Here we analyze a metropolitan-scale heterogeneous dataset for Indianapolis comprising 30,046 feeder-level outages between 2020 and 2024, linked to smart meters and submetering, to quantify the causal impact of electric vehicles (EVs), heat pumps (HPs) and distributed energy resources (DERs) on restoration surges. Statistical analysis and causal forest inference demonstrate that rising penetrations of all three assets significantly increase surge ratios, with effects strongly modulated by restoration timing, outage duration and weather conditions. We develop a component-aware multi-task Transformer estimator that disaggregates EV, HP and DER contributions, and apply it to project historical outages under counterfactual 2035 adoption pathways. In a policy-aligned pathway, evening restorations emerge as the binding reliability constraint, with exceedance probabilities of 0.057 when 30\% of system load is restored within the first 15 minutes. Mitigation measures, probabilistic EV restarts, short thermostat offsets and accelerated DER reconnection, reduce exceedance to 0.019 and eliminate it entirely when 20\% or less of system load is restored. These results demonstrate that transition-era surges are asset-driven and causally linked to electrification and decarbonization, but can be effectively managed through integrated operational strategies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2510.08357
- https://arxiv.org/pdf/2510.08357
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416384958
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416384958Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.08357Digital Object Identifier
- Title
-
Learning to Mitigate Post-Outage Load Surges: A Data-Driven Framework for Electrifying and Decarbonizing GridsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-09Full publication date if available
- Authors
-
Dingwei Wang, Zhaoyu WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.08357Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.08357Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.08357Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416384958 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.08357 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.08357 |
| ids.openalex | https://openalex.org/W4416384958 |
| fwci | |
| type | preprint |
| title | Learning to Mitigate Post-Outage Load Surges: A Data-Driven Framework for Electrifying and Decarbonizing Grids |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2510.08357 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.08357 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.08357 |
| locations[1].id | doi:10.48550/arxiv.2510.08357 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.08357 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102826748 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8237-9178 |
| authorships[0].author.display_name | Dingwei Wang |
| authorships[0].author_position | last |
| authorships[0].raw_author_name | Wang, Dingwei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5069975209 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhaoyu Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Zhaoyu |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.08357 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-11T00:00:00 |
| display_name | Learning to Mitigate Post-Outage Load Surges: A Data-Driven Framework for Electrifying and Decarbonizing Grids |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T12:41:28.507447 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.08357 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.08357 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.08357 |
| primary_location.id | pmh:oai:arXiv.org:2510.08357 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.08357 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.08357 |
| publication_date | 2025-10-09 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 24, 96, 121 |
| abstract_inverted_index.15 | 147 |
| abstract_inverted_index.EV | 152 |
| abstract_inverted_index.HP | 104 |
| abstract_inverted_index.In | 120 |
| abstract_inverted_index.We | 94 |
| abstract_inverted_index.as | 127 |
| abstract_inverted_index.be | 195 |
| abstract_inverted_index.by | 86 |
| abstract_inverted_index.is | 142, 176 |
| abstract_inverted_index.it | 110, 167 |
| abstract_inverted_index.of | 49, 74, 135, 139, 173 |
| abstract_inverted_index.on | 61 |
| abstract_inverted_index.or | 171 |
| abstract_inverted_index.to | 39, 44, 111, 163, 189 |
| abstract_inverted_index.we | 22 |
| abstract_inverted_index.DER | 106, 159 |
| abstract_inverted_index.EV, | 103 |
| abstract_inverted_index.all | 75 |
| abstract_inverted_index.and | 1, 8, 36, 42, 56, 66, 91, 105, 108, 157, 165, 186, 191 |
| abstract_inverted_index.are | 3, 184 |
| abstract_inverted_index.but | 193 |
| abstract_inverted_index.can | 194 |
| abstract_inverted_index.for | 14, 28 |
| abstract_inverted_index.the | 46, 128, 145 |
| abstract_inverted_index.yet | 11 |
| abstract_inverted_index.2020 | 35 |
| abstract_inverted_index.2035 | 117 |
| abstract_inverted_index.20\% | 170 |
| abstract_inverted_index.30\% | 138 |
| abstract_inverted_index.Here | 21 |
| abstract_inverted_index.heat | 53 |
| abstract_inverted_index.less | 172 |
| abstract_inverted_index.load | 16, 141, 175 |
| abstract_inverted_index.that | 71, 101, 181 |
| abstract_inverted_index.when | 137, 169 |
| abstract_inverted_index.with | 82, 132 |
| abstract_inverted_index.(HPs) | 55 |
| abstract_inverted_index.0.019 | 164 |
| abstract_inverted_index.0.057 | 136 |
| abstract_inverted_index.2024, | 37 |
| abstract_inverted_index.These | 178 |
| abstract_inverted_index.apply | 109 |
| abstract_inverted_index.first | 146 |
| abstract_inverted_index.power | 5 |
| abstract_inverted_index.pumps | 54 |
| abstract_inverted_index.short | 154 |
| abstract_inverted_index.smart | 40 |
| abstract_inverted_index.surge | 80 |
| abstract_inverted_index.their | 12 |
| abstract_inverted_index.three | 76 |
| abstract_inverted_index.under | 115 |
| abstract_inverted_index.(DERs) | 60 |
| abstract_inverted_index.(EVs), | 52 |
| abstract_inverted_index.30,046 | 31 |
| abstract_inverted_index.assets | 77 |
| abstract_inverted_index.causal | 47, 67 |
| abstract_inverted_index.demand | 7 |
| abstract_inverted_index.emerge | 126 |
| abstract_inverted_index.energy | 58 |
| abstract_inverted_index.forest | 68 |
| abstract_inverted_index.impact | 48 |
| abstract_inverted_index.linked | 38, 188 |
| abstract_inverted_index.meters | 41 |
| abstract_inverted_index.outage | 89 |
| abstract_inverted_index.poorly | 19 |
| abstract_inverted_index.reduce | 161 |
| abstract_inverted_index.remain | 18 |
| abstract_inverted_index.rising | 72 |
| abstract_inverted_index.surges | 17, 183 |
| abstract_inverted_index.system | 6, 140, 174 |
| abstract_inverted_index.within | 144 |
| abstract_inverted_index.analyze | 23 |
| abstract_inverted_index.between | 34 |
| abstract_inverted_index.binding | 129 |
| abstract_inverted_index.dataset | 27 |
| abstract_inverted_index.develop | 95 |
| abstract_inverted_index.effects | 83 |
| abstract_inverted_index.evening | 124 |
| abstract_inverted_index.managed | 197 |
| abstract_inverted_index.offsets | 156 |
| abstract_inverted_index.outages | 33, 114 |
| abstract_inverted_index.project | 112 |
| abstract_inverted_index.ratios, | 81 |
| abstract_inverted_index.results | 179 |
| abstract_inverted_index.surges. | 63 |
| abstract_inverted_index.through | 198 |
| abstract_inverted_index.timing, | 88 |
| abstract_inverted_index.weather | 92 |
| abstract_inverted_index.adoption | 118 |
| abstract_inverted_index.analysis | 65 |
| abstract_inverted_index.causally | 187 |
| abstract_inverted_index.duration | 90 |
| abstract_inverted_index.electric | 50 |
| abstract_inverted_index.entirely | 168 |
| abstract_inverted_index.increase | 79 |
| abstract_inverted_index.minutes. | 148 |
| abstract_inverted_index.pathway, | 123 |
| abstract_inverted_index.quantify | 45 |
| abstract_inverted_index.recovery | 9 |
| abstract_inverted_index.restored | 143 |
| abstract_inverted_index.strongly | 84 |
| abstract_inverted_index.vehicles | 51 |
| abstract_inverted_index.dynamics, | 10 |
| abstract_inverted_index.eliminate | 166 |
| abstract_inverted_index.estimator | 100 |
| abstract_inverted_index.inference | 69 |
| abstract_inverted_index.measures, | 150 |
| abstract_inverted_index.modulated | 85 |
| abstract_inverted_index.pathways. | 119 |
| abstract_inverted_index.resources | 59 |
| abstract_inverted_index.restarts, | 153 |
| abstract_inverted_index.restored. | 177 |
| abstract_inverted_index.Mitigation | 149 |
| abstract_inverted_index.comprising | 30 |
| abstract_inverted_index.exceedance | 133, 162 |
| abstract_inverted_index.historical | 113 |
| abstract_inverted_index.integrated | 199 |
| abstract_inverted_index.multi-task | 98 |
| abstract_inverted_index.thermostat | 155 |
| abstract_inverted_index.Statistical | 64 |
| abstract_inverted_index.Transformer | 99 |
| abstract_inverted_index.accelerated | 158 |
| abstract_inverted_index.conditions. | 93 |
| abstract_inverted_index.constraint, | 131 |
| abstract_inverted_index.demonstrate | 70, 180 |
| abstract_inverted_index.distributed | 57 |
| abstract_inverted_index.effectively | 196 |
| abstract_inverted_index.operational | 200 |
| abstract_inverted_index.post-outage | 15 |
| abstract_inverted_index.reliability | 130 |
| abstract_inverted_index.restoration | 62, 87 |
| abstract_inverted_index.strategies. | 201 |
| abstract_inverted_index.understood. | 20 |
| abstract_inverted_index.Indianapolis | 29 |
| abstract_inverted_index.asset-driven | 185 |
| abstract_inverted_index.feeder-level | 32 |
| abstract_inverted_index.implications | 13 |
| abstract_inverted_index.penetrations | 73 |
| abstract_inverted_index.restorations | 125 |
| abstract_inverted_index.submetering, | 43 |
| abstract_inverted_index.transforming | 4 |
| abstract_inverted_index.disaggregates | 102 |
| abstract_inverted_index.heterogeneous | 26 |
| abstract_inverted_index.probabilistic | 151 |
| abstract_inverted_index.probabilities | 134 |
| abstract_inverted_index.reconnection, | 160 |
| abstract_inverted_index.significantly | 78 |
| abstract_inverted_index.contributions, | 107 |
| abstract_inverted_index.counterfactual | 116 |
| abstract_inverted_index.policy-aligned | 122 |
| abstract_inverted_index.transition-era | 182 |
| abstract_inverted_index.Electrification | 0 |
| abstract_inverted_index.component-aware | 97 |
| abstract_inverted_index.decarbonization | 2 |
| abstract_inverted_index.electrification | 190 |
| abstract_inverted_index.decarbonization, | 192 |
| abstract_inverted_index.metropolitan-scale | 25 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |