Learning to optimize convex risk measures: The cases of utility-based shortfall risk and optimized certainty equivalent risk Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.01101
We consider the problems of estimation and optimization of two popular convex risk measures: utility-based shortfall risk (UBSR) and Optimized Certainty Equivalent (OCE) risk. We extend these risk measures to cover possibly unbounded random variables. We cover prominent risk measures like the entropic risk, expectile risk, monotone mean-variance risk, Value-at-Risk, and Conditional Value-at-Risk as few special cases of either the UBSR or the OCE risk. In the context of estimation, we derive non-asymptotic bounds on the mean absolute error (MAE) and mean-squared error (MSE) of the classical sample average approximation (SAA) estimators of both, the UBSR and the OCE. Next, in the context of optimization, we derive expressions for the UBSR gradient and the OCE gradient under a smooth parameterization. Utilizing these expressions, we propose gradient estimators for both, the UBSR and the OCE. We use the SAA estimator of UBSR in both these gradient estimators, and derive non-asymptotic bounds on MAE and MSE for the proposed gradient estimation schemes. We incorporate the aforementioned gradient estimators into a stochastic gradient (SG) algorithm for optimization. Finally, we derive non-asymptotic bounds that quantify the rate of convergence of our SG algorithm for the optimization of the UBSR and the OCE risk measure.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.01101
- https://arxiv.org/pdf/2506.01101
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414535122
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414535122Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.01101Digital Object Identifier
- Title
-
Learning to optimize convex risk measures: The cases of utility-based shortfall risk and optimized certainty equivalent riskWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-01Full publication date if available
- Authors
-
Sumedh Gupte, L. A. Prashanth, Sanjay P. BhatList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.01101Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.01101Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.01101Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414535122 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.01101 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.01101 |
| ids.openalex | https://openalex.org/W4414535122 |
| fwci | |
| type | preprint |
| title | Learning to optimize convex risk measures: The cases of utility-based shortfall risk and optimized certainty equivalent risk |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11413 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.983299970626831 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Risk and Portfolio Optimization |
| topics[1].id | https://openalex.org/T11801 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9578999876976013 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Reservoir Engineering and Simulation Methods |
| topics[2].id | https://openalex.org/T11976 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9232000112533569 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2003 |
| topics[2].subfield.display_name | Finance |
| topics[2].display_name | Capital Investment and Risk Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.01101 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.01101 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.01101 |
| locations[1].id | doi:10.48550/arxiv.2506.01101 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.01101 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5108222149 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sumedh Gupte |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sumedh Gupte |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5068379567 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | L. A. Prashanth |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Prashanth L. A. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5039306255 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8595-6081 |
| authorships[2].author.display_name | Sanjay P. Bhat |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sanjay P. Bhat |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.01101 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning to optimize convex risk measures: The cases of utility-based shortfall risk and optimized certainty equivalent risk |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11413 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.983299970626831 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Risk and Portfolio Optimization |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.01101 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.01101 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.01101 |
| primary_location.id | pmh:oai:arXiv.org:2506.01101 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.01101 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.01101 |
| publication_date | 2025-06-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 117, 167 |
| abstract_inverted_index.In | 65 |
| abstract_inverted_index.SG | 187 |
| abstract_inverted_index.We | 0, 24, 35, 134, 160 |
| abstract_inverted_index.as | 53 |
| abstract_inverted_index.in | 100, 141 |
| abstract_inverted_index.of | 4, 8, 57, 68, 84, 92, 103, 139, 183, 185, 192 |
| abstract_inverted_index.on | 74, 150 |
| abstract_inverted_index.or | 61 |
| abstract_inverted_index.to | 29 |
| abstract_inverted_index.we | 70, 105, 123, 175 |
| abstract_inverted_index.MAE | 151 |
| abstract_inverted_index.MSE | 153 |
| abstract_inverted_index.OCE | 63, 114, 197 |
| abstract_inverted_index.SAA | 137 |
| abstract_inverted_index.and | 6, 18, 50, 80, 96, 112, 131, 146, 152, 195 |
| abstract_inverted_index.few | 54 |
| abstract_inverted_index.for | 108, 127, 154, 172, 189 |
| abstract_inverted_index.our | 186 |
| abstract_inverted_index.the | 2, 41, 59, 62, 66, 75, 85, 94, 97, 101, 109, 113, 129, 132, 136, 155, 162, 181, 190, 193, 196 |
| abstract_inverted_index.two | 9 |
| abstract_inverted_index.use | 135 |
| abstract_inverted_index.(SG) | 170 |
| abstract_inverted_index.OCE. | 98, 133 |
| abstract_inverted_index.UBSR | 60, 95, 110, 130, 140, 194 |
| abstract_inverted_index.both | 142 |
| abstract_inverted_index.into | 166 |
| abstract_inverted_index.like | 40 |
| abstract_inverted_index.mean | 76 |
| abstract_inverted_index.rate | 182 |
| abstract_inverted_index.risk | 12, 16, 27, 38, 198 |
| abstract_inverted_index.that | 179 |
| abstract_inverted_index.(MAE) | 79 |
| abstract_inverted_index.(MSE) | 83 |
| abstract_inverted_index.(OCE) | 22 |
| abstract_inverted_index.(SAA) | 90 |
| abstract_inverted_index.Next, | 99 |
| abstract_inverted_index.both, | 93, 128 |
| abstract_inverted_index.cases | 56 |
| abstract_inverted_index.cover | 30, 36 |
| abstract_inverted_index.error | 78, 82 |
| abstract_inverted_index.risk, | 43, 45, 48 |
| abstract_inverted_index.risk. | 23, 64 |
| abstract_inverted_index.these | 26, 121, 143 |
| abstract_inverted_index.under | 116 |
| abstract_inverted_index.(UBSR) | 17 |
| abstract_inverted_index.bounds | 73, 149, 178 |
| abstract_inverted_index.convex | 11 |
| abstract_inverted_index.derive | 71, 106, 147, 176 |
| abstract_inverted_index.either | 58 |
| abstract_inverted_index.extend | 25 |
| abstract_inverted_index.random | 33 |
| abstract_inverted_index.sample | 87 |
| abstract_inverted_index.smooth | 118 |
| abstract_inverted_index.average | 88 |
| abstract_inverted_index.context | 67, 102 |
| abstract_inverted_index.popular | 10 |
| abstract_inverted_index.propose | 124 |
| abstract_inverted_index.special | 55 |
| abstract_inverted_index.Finally, | 174 |
| abstract_inverted_index.absolute | 77 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.entropic | 42 |
| abstract_inverted_index.gradient | 111, 115, 125, 144, 157, 164, 169 |
| abstract_inverted_index.measure. | 199 |
| abstract_inverted_index.measures | 28, 39 |
| abstract_inverted_index.monotone | 46 |
| abstract_inverted_index.possibly | 31 |
| abstract_inverted_index.problems | 3 |
| abstract_inverted_index.proposed | 156 |
| abstract_inverted_index.quantify | 180 |
| abstract_inverted_index.schemes. | 159 |
| abstract_inverted_index.Certainty | 20 |
| abstract_inverted_index.Optimized | 19 |
| abstract_inverted_index.Utilizing | 120 |
| abstract_inverted_index.algorithm | 171, 188 |
| abstract_inverted_index.classical | 86 |
| abstract_inverted_index.estimator | 138 |
| abstract_inverted_index.expectile | 44 |
| abstract_inverted_index.measures: | 13 |
| abstract_inverted_index.prominent | 37 |
| abstract_inverted_index.shortfall | 15 |
| abstract_inverted_index.unbounded | 32 |
| abstract_inverted_index.Equivalent | 21 |
| abstract_inverted_index.estimation | 5, 158 |
| abstract_inverted_index.estimators | 91, 126, 165 |
| abstract_inverted_index.stochastic | 168 |
| abstract_inverted_index.variables. | 34 |
| abstract_inverted_index.Conditional | 51 |
| abstract_inverted_index.convergence | 184 |
| abstract_inverted_index.estimation, | 69 |
| abstract_inverted_index.estimators, | 145 |
| abstract_inverted_index.expressions | 107 |
| abstract_inverted_index.incorporate | 161 |
| abstract_inverted_index.expressions, | 122 |
| abstract_inverted_index.mean-squared | 81 |
| abstract_inverted_index.optimization | 7, 191 |
| abstract_inverted_index.Value-at-Risk | 52 |
| abstract_inverted_index.approximation | 89 |
| abstract_inverted_index.mean-variance | 47 |
| abstract_inverted_index.optimization, | 104 |
| abstract_inverted_index.optimization. | 173 |
| abstract_inverted_index.utility-based | 14 |
| abstract_inverted_index.Value-at-Risk, | 49 |
| abstract_inverted_index.aforementioned | 163 |
| abstract_inverted_index.non-asymptotic | 72, 148, 177 |
| abstract_inverted_index.parameterization. | 119 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |