Learning to Segment Every Thing Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1711.10370
Most methods for object instance segmentation require all training examples to be labeled with segmentation masks. This requirement makes it expensive to annotate new categories and has restricted instance segmentation models to ~100 well-annotated classes. The goal of this paper is to propose a new partially supervised training paradigm, together with a novel weight transfer function, that enables training instance segmentation models on a large set of categories all of which have box annotations, but only a small fraction of which have mask annotations. These contributions allow us to train Mask R-CNN to detect and segment 3000 visual concepts using box annotations from the Visual Genome dataset and mask annotations from the 80 classes in the COCO dataset. We evaluate our approach in a controlled study on the COCO dataset. This work is a first step towards instance segmentation models that have broad comprehension of the visual world.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1711.10370
- https://arxiv.org/pdf/1711.10370
- OA Status
- green
- Cited By
- 15
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2768923469
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2768923469Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1711.10370Digital Object Identifier
- Title
-
Learning to Segment Every ThingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-11-28Full publication date if available
- Authors
-
Ronghang Hu, Piotr Dollár, Kaiming He, Trevor Darrell, Ross GirshickList of authors in order
- Landing page
-
https://arxiv.org/abs/1711.10370Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1711.10370Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1711.10370Direct OA link when available
- Concepts
-
Segmentation, Computer science, Artificial intelligence, Object (grammar), Set (abstract data type), Annotation, Pattern recognition (psychology), Function (biology), Training set, Machine learning, Natural language processing, Evolutionary biology, Biology, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 2, 2020: 2, 2019: 8, 2018: 3Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2768923469 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1711.10370 |
| ids.doi | https://doi.org/10.48550/arxiv.1711.10370 |
| ids.mag | 2768923469 |
| ids.openalex | https://openalex.org/W2768923469 |
| fwci | |
| type | preprint |
| title | Learning to Segment Every Thing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10627 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9945999979972839 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image and Video Retrieval Techniques |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9891999959945679 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9836000204086304 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8271039724349976 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8006478548049927 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6471667289733887 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2781238097 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5742513537406921 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[3].display_name | Object (grammar) |
| concepts[4].id | https://openalex.org/C177264268 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5197910070419312 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[4].display_name | Set (abstract data type) |
| concepts[5].id | https://openalex.org/C2776321320 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4821593165397644 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q857525 |
| concepts[5].display_name | Annotation |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4785526394844055 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C14036430 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4400154650211334 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[7].display_name | Function (biology) |
| concepts[8].id | https://openalex.org/C51632099 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42643940448760986 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[8].display_name | Training set |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3525763750076294 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C204321447 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32844361662864685 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[10].display_name | Natural language processing |
| concepts[11].id | https://openalex.org/C78458016 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[11].display_name | Evolutionary biology |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.8271039724349976 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8006478548049927 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6471667289733887 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/object |
| keywords[3].score | 0.5742513537406921 |
| keywords[3].display_name | Object (grammar) |
| keywords[4].id | https://openalex.org/keywords/set |
| keywords[4].score | 0.5197910070419312 |
| keywords[4].display_name | Set (abstract data type) |
| keywords[5].id | https://openalex.org/keywords/annotation |
| keywords[5].score | 0.4821593165397644 |
| keywords[5].display_name | Annotation |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4785526394844055 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/function |
| keywords[7].score | 0.4400154650211334 |
| keywords[7].display_name | Function (biology) |
| keywords[8].id | https://openalex.org/keywords/training-set |
| keywords[8].score | 0.42643940448760986 |
| keywords[8].display_name | Training set |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.3525763750076294 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/natural-language-processing |
| keywords[10].score | 0.32844361662864685 |
| keywords[10].display_name | Natural language processing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1711.10370 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1711.10370 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1711.10370 |
| locations[1].id | doi:10.48550/arxiv.1711.10370 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1711.10370 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5072304825 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5060-9485 |
| authorships[0].author.display_name | Ronghang Hu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[0].affiliations[0].raw_affiliation_string | [BAIR, UC Berkeley] |
| authorships[0].institutions[0].id | https://openalex.org/I95457486 |
| authorships[0].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Berkeley |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ronghang Hu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | [BAIR, UC Berkeley] |
| authorships[1].author.id | https://openalex.org/A5057866698 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Piotr Dollár |
| authorships[1].countries | IL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2252078561 |
| authorships[1].affiliations[0].raw_affiliation_string | Facebook AI Research (FAIR) |
| authorships[1].institutions[0].id | https://openalex.org/I2252078561 |
| authorships[1].institutions[0].ror | https://ror.org/02388em19 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I2252078561, https://openalex.org/I4210114444 |
| authorships[1].institutions[0].country_code | IL |
| authorships[1].institutions[0].display_name | Meta (Israel) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Piotr Dollár |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Facebook AI Research (FAIR) |
| authorships[2].author.id | https://openalex.org/A5100700361 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7318-9658 |
| authorships[2].author.display_name | Kaiming He |
| authorships[2].countries | IL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2252078561 |
| authorships[2].affiliations[0].raw_affiliation_string | Facebook AI Research (FAIR) |
| authorships[2].institutions[0].id | https://openalex.org/I2252078561 |
| authorships[2].institutions[0].ror | https://ror.org/02388em19 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I2252078561, https://openalex.org/I4210114444 |
| authorships[2].institutions[0].country_code | IL |
| authorships[2].institutions[0].display_name | Meta (Israel) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kaiming He |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Facebook AI Research (FAIR) |
| authorships[3].author.id | https://openalex.org/A5029105520 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5453-8533 |
| authorships[3].author.display_name | Trevor Darrell |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Trevor Darrell |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5049246408 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Ross Girshick |
| authorships[4].countries | IL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2252078561 |
| authorships[4].affiliations[0].raw_affiliation_string | Facebook AI Research (FAIR) |
| authorships[4].institutions[0].id | https://openalex.org/I2252078561 |
| authorships[4].institutions[0].ror | https://ror.org/02388em19 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I2252078561, https://openalex.org/I4210114444 |
| authorships[4].institutions[0].country_code | IL |
| authorships[4].institutions[0].display_name | Meta (Israel) |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ross Girshick |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Facebook AI Research (FAIR) |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1711.10370 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning to Segment Every Thing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10627 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9945999979972839 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image and Video Retrieval Techniques |
| related_works | https://openalex.org/W2361861616, https://openalex.org/W2263699433, https://openalex.org/W2377979023, https://openalex.org/W2218034408, https://openalex.org/W2392921965, https://openalex.org/W2358755282, https://openalex.org/W2625833328, https://openalex.org/W1533177136, https://openalex.org/W4380994516, https://openalex.org/W2251519152 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2019 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2018 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1711.10370 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1711.10370 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1711.10370 |
| primary_location.id | pmh:oai:arXiv.org:1711.10370 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1711.10370 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1711.10370 |
| publication_date | 2017-11-28 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2519882289, https://openalex.org/W2949650786, https://openalex.org/W2949086864, https://openalex.org/W2124351162, https://openalex.org/W1529410181, https://openalex.org/W2953054324, https://openalex.org/W2117539524, https://openalex.org/W2951624519, https://openalex.org/W2250539671, https://openalex.org/W2951638509, https://openalex.org/W2736809457, https://openalex.org/W2953236957, https://openalex.org/W2552414813, https://openalex.org/W2949114386, https://openalex.org/W2949533892, https://openalex.org/W2950577311, https://openalex.org/W2950139038, https://openalex.org/W2165698076, https://openalex.org/W2949556967, https://openalex.org/W2949474740, https://openalex.org/W2138203286, https://openalex.org/W1923115158, https://openalex.org/W2952632681, https://openalex.org/W2951084305, https://openalex.org/W2953106684, https://openalex.org/W1948751323, https://openalex.org/W1783315696, https://openalex.org/W2949295283, https://openalex.org/W2555182955, https://openalex.org/W1861492603 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 43, 51, 63, 76, 123, 133 |
| abstract_inverted_index.80 | 112 |
| abstract_inverted_index.We | 118 |
| abstract_inverted_index.be | 11 |
| abstract_inverted_index.in | 114, 122 |
| abstract_inverted_index.is | 40, 132 |
| abstract_inverted_index.it | 19 |
| abstract_inverted_index.of | 37, 66, 69, 79, 144 |
| abstract_inverted_index.on | 62, 126 |
| abstract_inverted_index.to | 10, 21, 31, 41, 88, 92 |
| abstract_inverted_index.us | 87 |
| abstract_inverted_index.The | 35 |
| abstract_inverted_index.all | 7, 68 |
| abstract_inverted_index.and | 25, 94, 107 |
| abstract_inverted_index.box | 72, 100 |
| abstract_inverted_index.but | 74 |
| abstract_inverted_index.for | 2 |
| abstract_inverted_index.has | 26 |
| abstract_inverted_index.new | 23, 44 |
| abstract_inverted_index.our | 120 |
| abstract_inverted_index.set | 65 |
| abstract_inverted_index.the | 103, 111, 115, 127, 145 |
| abstract_inverted_index.3000 | 96 |
| abstract_inverted_index.COCO | 116, 128 |
| abstract_inverted_index.Mask | 90 |
| abstract_inverted_index.Most | 0 |
| abstract_inverted_index.This | 16, 130 |
| abstract_inverted_index.from | 102, 110 |
| abstract_inverted_index.goal | 36 |
| abstract_inverted_index.have | 71, 81, 141 |
| abstract_inverted_index.mask | 82, 108 |
| abstract_inverted_index.only | 75 |
| abstract_inverted_index.step | 135 |
| abstract_inverted_index.that | 56, 140 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.with | 13, 50 |
| abstract_inverted_index.work | 131 |
| abstract_inverted_index.~100 | 32 |
| abstract_inverted_index.R-CNN | 91 |
| abstract_inverted_index.These | 84 |
| abstract_inverted_index.allow | 86 |
| abstract_inverted_index.broad | 142 |
| abstract_inverted_index.first | 134 |
| abstract_inverted_index.large | 64 |
| abstract_inverted_index.makes | 18 |
| abstract_inverted_index.novel | 52 |
| abstract_inverted_index.paper | 39 |
| abstract_inverted_index.small | 77 |
| abstract_inverted_index.study | 125 |
| abstract_inverted_index.train | 89 |
| abstract_inverted_index.using | 99 |
| abstract_inverted_index.which | 70, 80 |
| abstract_inverted_index.Genome | 105 |
| abstract_inverted_index.Visual | 104 |
| abstract_inverted_index.detect | 93 |
| abstract_inverted_index.masks. | 15 |
| abstract_inverted_index.models | 30, 61, 139 |
| abstract_inverted_index.object | 3 |
| abstract_inverted_index.visual | 97, 146 |
| abstract_inverted_index.weight | 53 |
| abstract_inverted_index.world. | 147 |
| abstract_inverted_index.classes | 113 |
| abstract_inverted_index.dataset | 106 |
| abstract_inverted_index.enables | 57 |
| abstract_inverted_index.labeled | 12 |
| abstract_inverted_index.methods | 1 |
| abstract_inverted_index.propose | 42 |
| abstract_inverted_index.require | 6 |
| abstract_inverted_index.segment | 95 |
| abstract_inverted_index.towards | 136 |
| abstract_inverted_index.annotate | 22 |
| abstract_inverted_index.approach | 121 |
| abstract_inverted_index.classes. | 34 |
| abstract_inverted_index.concepts | 98 |
| abstract_inverted_index.dataset. | 117, 129 |
| abstract_inverted_index.evaluate | 119 |
| abstract_inverted_index.examples | 9 |
| abstract_inverted_index.fraction | 78 |
| abstract_inverted_index.instance | 4, 28, 59, 137 |
| abstract_inverted_index.together | 49 |
| abstract_inverted_index.training | 8, 47, 58 |
| abstract_inverted_index.transfer | 54 |
| abstract_inverted_index.expensive | 20 |
| abstract_inverted_index.function, | 55 |
| abstract_inverted_index.paradigm, | 48 |
| abstract_inverted_index.partially | 45 |
| abstract_inverted_index.categories | 24, 67 |
| abstract_inverted_index.controlled | 124 |
| abstract_inverted_index.restricted | 27 |
| abstract_inverted_index.supervised | 46 |
| abstract_inverted_index.annotations | 101, 109 |
| abstract_inverted_index.requirement | 17 |
| abstract_inverted_index.annotations, | 73 |
| abstract_inverted_index.annotations. | 83 |
| abstract_inverted_index.segmentation | 5, 14, 29, 60, 138 |
| abstract_inverted_index.comprehension | 143 |
| abstract_inverted_index.contributions | 85 |
| abstract_inverted_index.well-annotated | 33 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |