Learning to Shop Like Humans: A Review-driven Retrieval-Augmented Recommendation Framework with LLMs Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.00698
Large language models (LLMs) have shown strong potential in recommendation tasks due to their strengths in language understanding, reasoning and knowledge integration. These capabilities are especially beneficial for review-based recommendation, which relies on semantically rich user-generated texts to reveal fine-grained user preferences and item attributes. However, effectively incorporating reviews into LLM-based recommendation remains challenging due to (1) inefficient to dynamically utilize user reviews under LLMs' constrained context windows, and (2) lacking effective mechanisms to prioritize reviews most relevant to the user's current decision context. To address these challenges, we propose RevBrowse, a review-driven recommendation framework inspired by the "browse-then-decide" decision process commonly observed in online user behavior. RevBrowse integrates user reviews into the LLM-based reranking process to enhance its ability to distinguish between candidate items. To improve the relevance and efficiency of review usage, we introduce PrefRAG, a retrieval-augmented module that disentangles user and item representations into structured forms and adaptively retrieves preference-relevant content conditioned on the target item. Extensive experiments on four Amazon review datasets demonstrate that RevBrowse achieves consistent and significant improvements over strong baselines, highlighting its generalizability and effectiveness in modeling dynamic user preferences. Furthermore, since the retrieval-augmented process is transparent, RevBrowse offers a certain level of interpretability by making visible which reviews influence the final recommendation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.00698
- https://arxiv.org/pdf/2509.00698
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416685084
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416685084Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.00698Digital Object Identifier
- Title
-
Learning to Shop Like Humans: A Review-driven Retrieval-Augmented Recommendation Framework with LLMsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-31Full publication date if available
- Authors
-
Kaiwen Wei, J. Gao, Jiang Zhong, Yuming Yang, Fangfang Lv, Zhihong LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.00698Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.00698Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.00698Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416685084 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.00698 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.00698 |
| ids.openalex | https://openalex.org/W4416685084 |
| fwci | |
| type | preprint |
| title | Learning to Shop Like Humans: A Review-driven Retrieval-Augmented Recommendation Framework with LLMs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.00698 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.00698 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.00698 |
| locations[1].id | doi:10.48550/arxiv.2509.00698 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.00698 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5068039769 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5830-0802 |
| authorships[0].author.display_name | Kaiwen Wei |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wei, Kaiwen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5073488986 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0193-9592 |
| authorships[1].author.display_name | J. Gao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gao, Jinpeng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5120429402 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jiang Zhong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhong, Jiang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100958962 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yuming Yang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yang, Yuming |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5040983343 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6636-3056 |
| authorships[4].author.display_name | Fangfang Lv |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lv, Fengmao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5120391994 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5428-2053 |
| authorships[5].author.display_name | Zhihong Li |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li, Zhenyang |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.00698 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning to Shop Like Humans: A Review-driven Retrieval-Augmented Recommendation Framework with LLMs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T20:38:47.702120 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.00698 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.00698 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.00698 |
| primary_location.id | pmh:oai:arXiv.org:2509.00698 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.00698 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.00698 |
| publication_date | 2025-08-31 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 91, 137, 196 |
| abstract_inverted_index.To | 84, 125 |
| abstract_inverted_index.by | 96, 201 |
| abstract_inverted_index.in | 8, 15, 103, 182 |
| abstract_inverted_index.is | 192 |
| abstract_inverted_index.of | 131, 199 |
| abstract_inverted_index.on | 32, 155, 161 |
| abstract_inverted_index.to | 12, 37, 55, 58, 73, 78, 116, 120 |
| abstract_inverted_index.we | 88, 134 |
| abstract_inverted_index.(1) | 56 |
| abstract_inverted_index.(2) | 69 |
| abstract_inverted_index.and | 19, 42, 68, 129, 143, 149, 171, 180 |
| abstract_inverted_index.are | 24 |
| abstract_inverted_index.due | 11, 54 |
| abstract_inverted_index.for | 27 |
| abstract_inverted_index.its | 118, 178 |
| abstract_inverted_index.the | 79, 97, 112, 127, 156, 189, 207 |
| abstract_inverted_index.four | 162 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.into | 49, 111, 146 |
| abstract_inverted_index.item | 43, 144 |
| abstract_inverted_index.most | 76 |
| abstract_inverted_index.over | 174 |
| abstract_inverted_index.rich | 34 |
| abstract_inverted_index.that | 140, 167 |
| abstract_inverted_index.user | 40, 61, 105, 109, 142, 185 |
| abstract_inverted_index.LLMs' | 64 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.These | 22 |
| abstract_inverted_index.final | 208 |
| abstract_inverted_index.forms | 148 |
| abstract_inverted_index.item. | 158 |
| abstract_inverted_index.level | 198 |
| abstract_inverted_index.shown | 5 |
| abstract_inverted_index.since | 188 |
| abstract_inverted_index.tasks | 10 |
| abstract_inverted_index.texts | 36 |
| abstract_inverted_index.their | 13 |
| abstract_inverted_index.these | 86 |
| abstract_inverted_index.under | 63 |
| abstract_inverted_index.which | 30, 204 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.Amazon | 163 |
| abstract_inverted_index.items. | 124 |
| abstract_inverted_index.making | 202 |
| abstract_inverted_index.models | 2 |
| abstract_inverted_index.module | 139 |
| abstract_inverted_index.offers | 195 |
| abstract_inverted_index.online | 104 |
| abstract_inverted_index.relies | 31 |
| abstract_inverted_index.reveal | 38 |
| abstract_inverted_index.review | 132, 164 |
| abstract_inverted_index.strong | 6, 175 |
| abstract_inverted_index.target | 157 |
| abstract_inverted_index.usage, | 133 |
| abstract_inverted_index.user's | 80 |
| abstract_inverted_index.ability | 119 |
| abstract_inverted_index.address | 85 |
| abstract_inverted_index.between | 122 |
| abstract_inverted_index.certain | 197 |
| abstract_inverted_index.content | 153 |
| abstract_inverted_index.context | 66 |
| abstract_inverted_index.current | 81 |
| abstract_inverted_index.dynamic | 184 |
| abstract_inverted_index.enhance | 117 |
| abstract_inverted_index.improve | 126 |
| abstract_inverted_index.lacking | 70 |
| abstract_inverted_index.process | 100, 115, 191 |
| abstract_inverted_index.propose | 89 |
| abstract_inverted_index.remains | 52 |
| abstract_inverted_index.reviews | 48, 62, 75, 110, 205 |
| abstract_inverted_index.utilize | 60 |
| abstract_inverted_index.visible | 203 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.PrefRAG, | 136 |
| abstract_inverted_index.achieves | 169 |
| abstract_inverted_index.commonly | 101 |
| abstract_inverted_index.context. | 83 |
| abstract_inverted_index.datasets | 165 |
| abstract_inverted_index.decision | 82, 99 |
| abstract_inverted_index.inspired | 95 |
| abstract_inverted_index.language | 1, 16 |
| abstract_inverted_index.modeling | 183 |
| abstract_inverted_index.observed | 102 |
| abstract_inverted_index.relevant | 77 |
| abstract_inverted_index.windows, | 67 |
| abstract_inverted_index.Extensive | 159 |
| abstract_inverted_index.LLM-based | 50, 113 |
| abstract_inverted_index.RevBrowse | 107, 168, 194 |
| abstract_inverted_index.behavior. | 106 |
| abstract_inverted_index.candidate | 123 |
| abstract_inverted_index.effective | 71 |
| abstract_inverted_index.framework | 94 |
| abstract_inverted_index.influence | 206 |
| abstract_inverted_index.introduce | 135 |
| abstract_inverted_index.knowledge | 20 |
| abstract_inverted_index.potential | 7 |
| abstract_inverted_index.reasoning | 18 |
| abstract_inverted_index.relevance | 128 |
| abstract_inverted_index.reranking | 114 |
| abstract_inverted_index.retrieves | 151 |
| abstract_inverted_index.strengths | 14 |
| abstract_inverted_index.RevBrowse, | 90 |
| abstract_inverted_index.adaptively | 150 |
| abstract_inverted_index.baselines, | 176 |
| abstract_inverted_index.beneficial | 26 |
| abstract_inverted_index.consistent | 170 |
| abstract_inverted_index.efficiency | 130 |
| abstract_inverted_index.especially | 25 |
| abstract_inverted_index.integrates | 108 |
| abstract_inverted_index.mechanisms | 72 |
| abstract_inverted_index.prioritize | 74 |
| abstract_inverted_index.structured | 147 |
| abstract_inverted_index.attributes. | 44 |
| abstract_inverted_index.challenges, | 87 |
| abstract_inverted_index.challenging | 53 |
| abstract_inverted_index.conditioned | 154 |
| abstract_inverted_index.constrained | 65 |
| abstract_inverted_index.demonstrate | 166 |
| abstract_inverted_index.distinguish | 121 |
| abstract_inverted_index.dynamically | 59 |
| abstract_inverted_index.effectively | 46 |
| abstract_inverted_index.experiments | 160 |
| abstract_inverted_index.inefficient | 57 |
| abstract_inverted_index.preferences | 41 |
| abstract_inverted_index.significant | 172 |
| abstract_inverted_index.Furthermore, | 187 |
| abstract_inverted_index.capabilities | 23 |
| abstract_inverted_index.disentangles | 141 |
| abstract_inverted_index.fine-grained | 39 |
| abstract_inverted_index.highlighting | 177 |
| abstract_inverted_index.improvements | 173 |
| abstract_inverted_index.integration. | 21 |
| abstract_inverted_index.preferences. | 186 |
| abstract_inverted_index.review-based | 28 |
| abstract_inverted_index.semantically | 33 |
| abstract_inverted_index.transparent, | 193 |
| abstract_inverted_index.effectiveness | 181 |
| abstract_inverted_index.incorporating | 47 |
| abstract_inverted_index.review-driven | 92 |
| abstract_inverted_index.recommendation | 9, 51, 93 |
| abstract_inverted_index.understanding, | 17 |
| abstract_inverted_index.user-generated | 35 |
| abstract_inverted_index.recommendation, | 29 |
| abstract_inverted_index.recommendation. | 209 |
| abstract_inverted_index.representations | 145 |
| abstract_inverted_index.generalizability | 179 |
| abstract_inverted_index.interpretability | 200 |
| abstract_inverted_index.preference-relevant | 152 |
| abstract_inverted_index.retrieval-augmented | 138, 190 |
| abstract_inverted_index."browse-then-decide" | 98 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |