Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2012.07910
Monte Carlo tree search (MCTS) has achieved state-of-the-art results in many domains such as Go and Atari games when combining with deep neural networks (DNNs). When more simulations are executed, MCTS can achieve higher performance but also requires enormous amounts of CPU and GPU resources. However, not all states require a long searching time to identify the best action that the agent can find. For example, in 19x19 Go and NoGo, we found that for more than half of the states, the best action predicted by DNN remains unchanged even after searching 2 minutes. This implies that a significant amount of resources can be saved if we are able to stop the searching earlier when we are confident with the current searching result. In this paper, we propose to achieve this goal by predicting the uncertainty of the current searching status and use the result to decide whether we should stop searching. With our algorithm, called Dynamic Simulation MCTS (DS-MCTS), we can speed up a NoGo agent trained by AlphaZero 2.5 times faster while maintaining a similar winning rate. Also, under the same average simulation count, our method can achieve a 61% winning rate against the original program.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2012.07910
- https://arxiv.org/pdf/2012.07910
- OA Status
- green
- Cited By
- 1
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3110740179
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3110740179Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2012.07910Digital Object Identifier
- Title
-
Learning to Stop: Dynamic Simulation Monte-Carlo Tree SearchWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-12-14Full publication date if available
- Authors
-
Li-Cheng Lan, Meng‐Yu Tsai, Ti-Rong Wu, I‐Chen Wu, Cho‐Jui HsiehList of authors in order
- Landing page
-
https://arxiv.org/abs/2012.07910Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2012.07910Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2012.07910Direct OA link when available
- Concepts
-
Monte Carlo tree search, Computer science, Tree (set theory), Monte Carlo method, Action (physics), State (computer science), Deep neural networks, Artificial intelligence, Speedup, Artificial neural network, Machine learning, Algorithm, Parallel computing, Mathematics, Statistics, Quantum mechanics, Physics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3110740179 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2012.07910 |
| ids.doi | https://doi.org/10.48550/arxiv.2012.07910 |
| ids.mag | 3110740179 |
| ids.openalex | https://openalex.org/W3110740179 |
| fwci | |
| type | preprint |
| title | Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11574 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Artificial Intelligence in Games |
| topics[1].id | https://openalex.org/T10462 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Reinforcement Learning in Robotics |
| topics[2].id | https://openalex.org/T11674 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9882000088691711 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2002 |
| topics[2].subfield.display_name | Economics and Econometrics |
| topics[2].display_name | Sports Analytics and Performance |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C46149586 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8900165557861328 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11785332 |
| concepts[0].display_name | Monte Carlo tree search |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8122360110282898 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C113174947 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6603901386260986 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[2].display_name | Tree (set theory) |
| concepts[3].id | https://openalex.org/C19499675 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6398211121559143 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[3].display_name | Monte Carlo method |
| concepts[4].id | https://openalex.org/C2780791683 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5451942086219788 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q846785 |
| concepts[4].display_name | Action (physics) |
| concepts[5].id | https://openalex.org/C48103436 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5068116784095764 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[5].display_name | State (computer science) |
| concepts[6].id | https://openalex.org/C2984842247 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5051563382148743 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep neural networks |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4579218626022339 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C68339613 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4554519057273865 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[8].display_name | Speedup |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43218812346458435 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.344923198223114 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2830905020236969 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C173608175 |
| concepts[12].level | 1 |
| concepts[12].score | 0.13340461254119873 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[12].display_name | Parallel computing |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09263333678245544 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0632382333278656 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/monte-carlo-tree-search |
| keywords[0].score | 0.8900165557861328 |
| keywords[0].display_name | Monte Carlo tree search |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8122360110282898 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/tree |
| keywords[2].score | 0.6603901386260986 |
| keywords[2].display_name | Tree (set theory) |
| keywords[3].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[3].score | 0.6398211121559143 |
| keywords[3].display_name | Monte Carlo method |
| keywords[4].id | https://openalex.org/keywords/action |
| keywords[4].score | 0.5451942086219788 |
| keywords[4].display_name | Action (physics) |
| keywords[5].id | https://openalex.org/keywords/state |
| keywords[5].score | 0.5068116784095764 |
| keywords[5].display_name | State (computer science) |
| keywords[6].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[6].score | 0.5051563382148743 |
| keywords[6].display_name | Deep neural networks |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4579218626022339 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/speedup |
| keywords[8].score | 0.4554519057273865 |
| keywords[8].display_name | Speedup |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.43218812346458435 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.344923198223114 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.2830905020236969 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/parallel-computing |
| keywords[12].score | 0.13340461254119873 |
| keywords[12].display_name | Parallel computing |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.09263333678245544 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.0632382333278656 |
| keywords[14].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2012.07910 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2012.07910 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2012.07910 |
| locations[1].id | doi:10.48550/arxiv.2012.07910 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2012.07910 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5013014107 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Li-Cheng Lan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li-Cheng Lan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102144400 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Meng‐Yu Tsai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Meng-Yu Tsai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5027984982 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7532-3176 |
| authorships[2].author.display_name | Ti-Rong Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ti-Rong Wu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5016730899 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2535-0587 |
| authorships[3].author.display_name | I‐Chen Wu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | I-Chen Wu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5010841999 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3520-9627 |
| authorships[4].author.display_name | Cho‐Jui Hsieh |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Cho-Jui Hsieh |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2012.07910 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11574 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Artificial Intelligence in Games |
| related_works | https://openalex.org/W2058965144, https://openalex.org/W2164382479, https://openalex.org/W2146343568, https://openalex.org/W98480971, https://openalex.org/W2150291671, https://openalex.org/W2013643406, https://openalex.org/W2027972911, https://openalex.org/W2157978810, https://openalex.org/W2597809628, https://openalex.org/W3046370962 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2012.07910 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2012.07910 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2012.07910 |
| primary_location.id | pmh:oai:arXiv.org:2012.07910 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2012.07910 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2012.07910 |
| publication_date | 2020-12-14 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2257979135, https://openalex.org/W2952053192, https://openalex.org/W2919115771, https://openalex.org/W1845972764, https://openalex.org/W2126316555, https://openalex.org/W2614839826, https://openalex.org/W1492706321, https://openalex.org/W2964212410, https://openalex.org/W2995336719, https://openalex.org/W1977989560, https://openalex.org/W2535938846, https://openalex.org/W2787289320, https://openalex.org/W2111821756, https://openalex.org/W2787034477, https://openalex.org/W2521000342, https://openalex.org/W2963238274, https://openalex.org/W2964059111, https://openalex.org/W2918318309, https://openalex.org/W1510476642, https://openalex.org/W2462906003, https://openalex.org/W2965560556, https://openalex.org/W2808584951, https://openalex.org/W1618905105, https://openalex.org/W2194775991, https://openalex.org/W2902907165, https://openalex.org/W2899205164, https://openalex.org/W24709407, https://openalex.org/W4210257598, https://openalex.org/W1625390266, https://openalex.org/W2766447205, https://openalex.org/W2945850646, https://openalex.org/W2786787033, https://openalex.org/W3118210634, https://openalex.org/W2767414122 |
| referenced_works_count | 34 |
| abstract_inverted_index.2 | 92 |
| abstract_inverted_index.a | 50, 97, 164, 175, 190 |
| abstract_inverted_index.Go | 14, 68 |
| abstract_inverted_index.In | 123 |
| abstract_inverted_index.as | 13 |
| abstract_inverted_index.be | 103 |
| abstract_inverted_index.by | 85, 132, 168 |
| abstract_inverted_index.if | 105 |
| abstract_inverted_index.in | 9, 66 |
| abstract_inverted_index.of | 40, 78, 100, 136 |
| abstract_inverted_index.to | 54, 109, 128, 145 |
| abstract_inverted_index.up | 163 |
| abstract_inverted_index.we | 71, 106, 115, 126, 148, 160 |
| abstract_inverted_index.2.5 | 170 |
| abstract_inverted_index.61% | 191 |
| abstract_inverted_index.CPU | 41 |
| abstract_inverted_index.DNN | 86 |
| abstract_inverted_index.For | 64 |
| abstract_inverted_index.GPU | 43 |
| abstract_inverted_index.all | 47 |
| abstract_inverted_index.and | 15, 42, 69, 141 |
| abstract_inverted_index.are | 28, 107, 116 |
| abstract_inverted_index.but | 35 |
| abstract_inverted_index.can | 31, 62, 102, 161, 188 |
| abstract_inverted_index.for | 74 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.not | 46 |
| abstract_inverted_index.our | 153, 186 |
| abstract_inverted_index.the | 56, 60, 79, 81, 111, 119, 134, 137, 143, 181, 195 |
| abstract_inverted_index.use | 142 |
| abstract_inverted_index.MCTS | 30, 158 |
| abstract_inverted_index.NoGo | 165 |
| abstract_inverted_index.This | 94 |
| abstract_inverted_index.When | 25 |
| abstract_inverted_index.With | 152 |
| abstract_inverted_index.able | 108 |
| abstract_inverted_index.also | 36 |
| abstract_inverted_index.best | 57, 82 |
| abstract_inverted_index.deep | 21 |
| abstract_inverted_index.even | 89 |
| abstract_inverted_index.goal | 131 |
| abstract_inverted_index.half | 77 |
| abstract_inverted_index.long | 51 |
| abstract_inverted_index.many | 10 |
| abstract_inverted_index.more | 26, 75 |
| abstract_inverted_index.rate | 193 |
| abstract_inverted_index.same | 182 |
| abstract_inverted_index.stop | 110, 150 |
| abstract_inverted_index.such | 12 |
| abstract_inverted_index.than | 76 |
| abstract_inverted_index.that | 59, 73, 96 |
| abstract_inverted_index.this | 124, 130 |
| abstract_inverted_index.time | 53 |
| abstract_inverted_index.tree | 2 |
| abstract_inverted_index.when | 18, 114 |
| abstract_inverted_index.with | 20, 118 |
| abstract_inverted_index.19x19 | 67 |
| abstract_inverted_index.Also, | 179 |
| abstract_inverted_index.Atari | 16 |
| abstract_inverted_index.Carlo | 1 |
| abstract_inverted_index.Monte | 0 |
| abstract_inverted_index.NoGo, | 70 |
| abstract_inverted_index.after | 90 |
| abstract_inverted_index.agent | 61, 166 |
| abstract_inverted_index.find. | 63 |
| abstract_inverted_index.found | 72 |
| abstract_inverted_index.games | 17 |
| abstract_inverted_index.rate. | 178 |
| abstract_inverted_index.saved | 104 |
| abstract_inverted_index.speed | 162 |
| abstract_inverted_index.times | 171 |
| abstract_inverted_index.under | 180 |
| abstract_inverted_index.while | 173 |
| abstract_inverted_index.(MCTS) | 4 |
| abstract_inverted_index.action | 58, 83 |
| abstract_inverted_index.amount | 99 |
| abstract_inverted_index.called | 155 |
| abstract_inverted_index.count, | 185 |
| abstract_inverted_index.decide | 146 |
| abstract_inverted_index.faster | 172 |
| abstract_inverted_index.higher | 33 |
| abstract_inverted_index.method | 187 |
| abstract_inverted_index.neural | 22 |
| abstract_inverted_index.paper, | 125 |
| abstract_inverted_index.result | 144 |
| abstract_inverted_index.search | 3 |
| abstract_inverted_index.should | 149 |
| abstract_inverted_index.states | 48 |
| abstract_inverted_index.status | 140 |
| abstract_inverted_index.(DNNs). | 24 |
| abstract_inverted_index.Dynamic | 156 |
| abstract_inverted_index.achieve | 32, 129, 189 |
| abstract_inverted_index.against | 194 |
| abstract_inverted_index.amounts | 39 |
| abstract_inverted_index.average | 183 |
| abstract_inverted_index.current | 120, 138 |
| abstract_inverted_index.domains | 11 |
| abstract_inverted_index.earlier | 113 |
| abstract_inverted_index.implies | 95 |
| abstract_inverted_index.propose | 127 |
| abstract_inverted_index.remains | 87 |
| abstract_inverted_index.require | 49 |
| abstract_inverted_index.result. | 122 |
| abstract_inverted_index.results | 8 |
| abstract_inverted_index.similar | 176 |
| abstract_inverted_index.states, | 80 |
| abstract_inverted_index.trained | 167 |
| abstract_inverted_index.whether | 147 |
| abstract_inverted_index.winning | 177, 192 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.achieved | 6 |
| abstract_inverted_index.enormous | 38 |
| abstract_inverted_index.example, | 65 |
| abstract_inverted_index.identify | 55 |
| abstract_inverted_index.minutes. | 93 |
| abstract_inverted_index.networks | 23 |
| abstract_inverted_index.original | 196 |
| abstract_inverted_index.program. | 197 |
| abstract_inverted_index.requires | 37 |
| abstract_inverted_index.AlphaZero | 169 |
| abstract_inverted_index.combining | 19 |
| abstract_inverted_index.confident | 117 |
| abstract_inverted_index.executed, | 29 |
| abstract_inverted_index.predicted | 84 |
| abstract_inverted_index.resources | 101 |
| abstract_inverted_index.searching | 52, 91, 112, 121, 139 |
| abstract_inverted_index.unchanged | 88 |
| abstract_inverted_index.(DS-MCTS), | 159 |
| abstract_inverted_index.Simulation | 157 |
| abstract_inverted_index.algorithm, | 154 |
| abstract_inverted_index.predicting | 133 |
| abstract_inverted_index.resources. | 44 |
| abstract_inverted_index.searching. | 151 |
| abstract_inverted_index.simulation | 184 |
| abstract_inverted_index.maintaining | 174 |
| abstract_inverted_index.performance | 34 |
| abstract_inverted_index.significant | 98 |
| abstract_inverted_index.simulations | 27 |
| abstract_inverted_index.uncertainty | 135 |
| abstract_inverted_index.state-of-the-art | 7 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |