Learning Together Securely: Prototype-Based Federated Multi-Modal Hashing for Safe and Efficient Multi-Modal Retrieval Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v39i21.34475
With the proliferation of multi-modal data, safe and efficient multi-modal hashing retrieval has become a pressing research challenge, particularly due to concerns over data privacy during centralized processing. To address this, we propose Prototype-based Federated Multi-modal Hashing (PFMH), an innovative framework that seamlessly integrates federated learning with multi-modal hashing techniques. PFMH achieves fine-grained fusion of heterogeneous multi-modal data, enhancing retrieval accuracy while ensuring data privacy through prototype-based communication, thereby reducing communication costs and mitigating risks of data leakage. Furthermore, using a prototype completion strategy, PFMH tackles class imbalance and statistical heterogeneity in multi-modal data, improving model generalization and performance across diverse data distributions. Extensive experiments demonstrate the efficiency and effectiveness of PFMH within the federated learning framework, enabling distributed training for secure and precise multi-modal retrieval in real-world scenarios.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v39i21.34475
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409363357
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409363357Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v39i21.34475Digital Object Identifier
- Title
-
Learning Together Securely: Prototype-Based Federated Multi-Modal Hashing for Safe and Efficient Multi-Modal RetrievalWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-11Full publication date if available
- Authors
-
Ruifan Zuo, C. Zheng, Lei Zhu, Wenpeng Lü, Yiqiang Xiang, Li Zhao, Xiaofeng QuList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v39i21.34475Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1609/aaai.v39i21.34475Direct OA link when available
- Concepts
-
Modal, Computer science, Hash function, Computer security, Polymer chemistry, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409363357 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v39i21.34475 |
| ids.doi | https://doi.org/10.1609/aaai.v39i21.34475 |
| ids.openalex | https://openalex.org/W4409363357 |
| fwci | 0.0 |
| type | article |
| title | Learning Together Securely: Prototype-Based Federated Multi-Modal Hashing for Safe and Efficient Multi-Modal Retrieval |
| biblio.issue | 21 |
| biblio.volume | 39 |
| biblio.last_page | 23116 |
| biblio.first_page | 23108 |
| topics[0].id | https://openalex.org/T10627 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9861000180244446 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image and Video Retrieval Techniques |
| topics[1].id | https://openalex.org/T11478 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9739000201225281 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Caching and Content Delivery |
| topics[2].id | https://openalex.org/T11269 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9577999711036682 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Algorithms and Data Compression |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C71139939 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8817412257194519 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[0].display_name | Modal |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7225204706192017 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C99138194 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6688529849052429 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q183427 |
| concepts[2].display_name | Hash function |
| concepts[3].id | https://openalex.org/C38652104 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3439410328865051 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[3].display_name | Computer security |
| concepts[4].id | https://openalex.org/C188027245 |
| concepts[4].level | 1 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[4].display_name | Polymer chemistry |
| concepts[5].id | https://openalex.org/C185592680 |
| concepts[5].level | 0 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[5].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/modal |
| keywords[0].score | 0.8817412257194519 |
| keywords[0].display_name | Modal |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7225204706192017 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/hash-function |
| keywords[2].score | 0.6688529849052429 |
| keywords[2].display_name | Hash function |
| keywords[3].id | https://openalex.org/keywords/computer-security |
| keywords[3].score | 0.3439410328865051 |
| keywords[3].display_name | Computer security |
| language | en |
| locations[0].id | doi:10.1609/aaai.v39i21.34475 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v39i21.34475 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5099472839 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-7052-1264 |
| authorships[0].author.display_name | Ruifan Zuo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ruifan Zuo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5035746511 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6799-5212 |
| authorships[1].author.display_name | C. Zheng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chaoqun Zheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5108048954 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2993-7142 |
| authorships[2].author.display_name | Lei Zhu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lei Zhu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5076564877 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1840-3540 |
| authorships[3].author.display_name | Wenpeng Lü |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wenpeng Lu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5021244061 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4363-9926 |
| authorships[4].author.display_name | Yiqiang Xiang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yuanyuan Xiang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5006025566 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7374-3348 |
| authorships[5].author.display_name | Li Zhao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhao Li |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5120491940 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2119-5383 |
| authorships[6].author.display_name | Xiaofeng Qu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xiaofeng Qu |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1609/aaai.v39i21.34475 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning Together Securely: Prototype-Based Federated Multi-Modal Hashing for Safe and Efficient Multi-Modal Retrieval |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10627 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9861000180244446 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image and Video Retrieval Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v39i21.34475 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v39i21.34475 |
| primary_location.id | doi:10.1609/aaai.v39i21.34475 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v39i21.34475 |
| publication_date | 2025-04-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 14, 80 |
| abstract_inverted_index.To | 28 |
| abstract_inverted_index.an | 38 |
| abstract_inverted_index.in | 91, 126 |
| abstract_inverted_index.of | 3, 54, 75, 110 |
| abstract_inverted_index.to | 20 |
| abstract_inverted_index.we | 31 |
| abstract_inverted_index.and | 7, 72, 88, 97, 108, 122 |
| abstract_inverted_index.due | 19 |
| abstract_inverted_index.for | 120 |
| abstract_inverted_index.has | 12 |
| abstract_inverted_index.the | 1, 106, 113 |
| abstract_inverted_index.PFMH | 50, 84, 111 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.data | 23, 63, 76, 101 |
| abstract_inverted_index.over | 22 |
| abstract_inverted_index.safe | 6 |
| abstract_inverted_index.that | 41 |
| abstract_inverted_index.with | 46 |
| abstract_inverted_index.class | 86 |
| abstract_inverted_index.costs | 71 |
| abstract_inverted_index.data, | 5, 57, 93 |
| abstract_inverted_index.model | 95 |
| abstract_inverted_index.risks | 74 |
| abstract_inverted_index.this, | 30 |
| abstract_inverted_index.using | 79 |
| abstract_inverted_index.while | 61 |
| abstract_inverted_index.across | 99 |
| abstract_inverted_index.become | 13 |
| abstract_inverted_index.during | 25 |
| abstract_inverted_index.fusion | 53 |
| abstract_inverted_index.secure | 121 |
| abstract_inverted_index.within | 112 |
| abstract_inverted_index.(PFMH), | 37 |
| abstract_inverted_index.Hashing | 36 |
| abstract_inverted_index.address | 29 |
| abstract_inverted_index.diverse | 100 |
| abstract_inverted_index.hashing | 10, 48 |
| abstract_inverted_index.precise | 123 |
| abstract_inverted_index.privacy | 24, 64 |
| abstract_inverted_index.propose | 32 |
| abstract_inverted_index.tackles | 85 |
| abstract_inverted_index.thereby | 68 |
| abstract_inverted_index.through | 65 |
| abstract_inverted_index.accuracy | 60 |
| abstract_inverted_index.achieves | 51 |
| abstract_inverted_index.concerns | 21 |
| abstract_inverted_index.enabling | 117 |
| abstract_inverted_index.ensuring | 62 |
| abstract_inverted_index.leakage. | 77 |
| abstract_inverted_index.learning | 45, 115 |
| abstract_inverted_index.pressing | 15 |
| abstract_inverted_index.reducing | 69 |
| abstract_inverted_index.research | 16 |
| abstract_inverted_index.training | 119 |
| abstract_inverted_index.Extensive | 103 |
| abstract_inverted_index.Federated | 34 |
| abstract_inverted_index.efficient | 8 |
| abstract_inverted_index.enhancing | 58 |
| abstract_inverted_index.federated | 44, 114 |
| abstract_inverted_index.framework | 40 |
| abstract_inverted_index.imbalance | 87 |
| abstract_inverted_index.improving | 94 |
| abstract_inverted_index.prototype | 81 |
| abstract_inverted_index.retrieval | 11, 59, 125 |
| abstract_inverted_index.strategy, | 83 |
| abstract_inverted_index.challenge, | 17 |
| abstract_inverted_index.completion | 82 |
| abstract_inverted_index.efficiency | 107 |
| abstract_inverted_index.framework, | 116 |
| abstract_inverted_index.innovative | 39 |
| abstract_inverted_index.integrates | 43 |
| abstract_inverted_index.mitigating | 73 |
| abstract_inverted_index.real-world | 127 |
| abstract_inverted_index.scenarios. | 128 |
| abstract_inverted_index.seamlessly | 42 |
| abstract_inverted_index.Multi-modal | 35 |
| abstract_inverted_index.centralized | 26 |
| abstract_inverted_index.demonstrate | 105 |
| abstract_inverted_index.distributed | 118 |
| abstract_inverted_index.experiments | 104 |
| abstract_inverted_index.multi-modal | 4, 9, 47, 56, 92, 124 |
| abstract_inverted_index.performance | 98 |
| abstract_inverted_index.processing. | 27 |
| abstract_inverted_index.statistical | 89 |
| abstract_inverted_index.techniques. | 49 |
| abstract_inverted_index.Furthermore, | 78 |
| abstract_inverted_index.fine-grained | 52 |
| abstract_inverted_index.particularly | 18 |
| abstract_inverted_index.communication | 70 |
| abstract_inverted_index.effectiveness | 109 |
| abstract_inverted_index.heterogeneity | 90 |
| abstract_inverted_index.heterogeneous | 55 |
| abstract_inverted_index.proliferation | 2 |
| abstract_inverted_index.communication, | 67 |
| abstract_inverted_index.distributions. | 102 |
| abstract_inverted_index.generalization | 96 |
| abstract_inverted_index.Prototype-based | 33 |
| abstract_inverted_index.prototype-based | 66 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.13147914 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |