Learning V1 Simple Cells with Vector Representation of Local Content and Matrix Representation of Local Motion Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v36i6.20622
This paper proposes a representational model for image pairs such as consecutive video frames that are related by local pixel displacements, in the hope that the model may shed light on motion perception in primary visual cortex (V1). The model couples the following two components: (1) the vector representations of local contents of images and (2) the matrix representations of local pixel displacements caused by the relative motions between the agent and the objects in the 3D scene. When the image frame undergoes changes due to local pixel displacements, the vectors are multiplied by the matrices that represent the local displacements. Thus the vector representation is equivariant as it varies according to the local displacements. Our experiments show that our model can learn Gabor-like filter pairs of quadrature phases. The profiles of the learned filters match those of simple cells in Macaque V1. Moreover, we demonstrate that the model can learn to infer local motions in either a supervised or unsupervised manner. With such a simple model, we achieve competitive results on optical flow estimation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v36i6.20622
- https://ojs.aaai.org/index.php/AAAI/article/download/20622/20381
- OA Status
- diamond
- Cited By
- 1
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283818232
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283818232Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v36i6.20622Digital Object Identifier
- Title
-
Learning V1 Simple Cells with Vector Representation of Local Content and Matrix Representation of Local MotionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-28Full publication date if available
- Authors
-
Ruiqi Gao, Jianwen Xie, Siyuan Huang, Yufan Ren, Song‐Chun Zhu, Ying WuList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v36i6.20622Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/20622/20381Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/20622/20381Direct OA link when available
- Concepts
-
Artificial intelligence, Representation (politics), Computer vision, Pixel, Optical flow, Computer science, Pattern recognition (psychology), Equivariant map, Simple (philosophy), Gabor filter, Filter (signal processing), Mathematics, Matrix (chemical analysis), Image (mathematics), Pure mathematics, Composite material, Materials science, Political science, Epistemology, Law, Philosophy, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283818232 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v36i6.20622 |
| ids.doi | https://doi.org/10.1609/aaai.v36i6.20622 |
| ids.openalex | https://openalex.org/W4283818232 |
| fwci | 0.06904426 |
| type | article |
| title | Learning V1 Simple Cells with Vector Representation of Local Content and Matrix Representation of Local Motion |
| biblio.issue | 6 |
| biblio.volume | 36 |
| biblio.last_page | 6684 |
| biblio.first_page | 6674 |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T10581 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.977400004863739 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Neural dynamics and brain function |
| topics[2].id | https://openalex.org/T10427 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9750000238418579 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Visual perception and processing mechanisms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6516079902648926 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C2776359362 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6442226767539978 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[1].display_name | Representation (politics) |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5629650354385376 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C160633673 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5440515875816345 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[3].display_name | Pixel |
| concepts[4].id | https://openalex.org/C155542232 |
| concepts[4].level | 3 |
| concepts[4].score | 0.48147764801979065 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q736111 |
| concepts[4].display_name | Optical flow |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4761336147785187 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46441954374313354 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C171036898 |
| concepts[7].level | 2 |
| concepts[7].score | 0.458562970161438 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q256355 |
| concepts[7].display_name | Equivariant map |
| concepts[8].id | https://openalex.org/C2780586882 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4518926441669464 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7520643 |
| concepts[8].display_name | Simple (philosophy) |
| concepts[9].id | https://openalex.org/C2779883129 |
| concepts[9].level | 3 |
| concepts[9].score | 0.44154953956604004 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2447890 |
| concepts[9].display_name | Gabor filter |
| concepts[10].id | https://openalex.org/C106131492 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43061214685440063 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[10].display_name | Filter (signal processing) |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.41753122210502625 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C106487976 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4139511287212372 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[12].display_name | Matrix (chemical analysis) |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2910536527633667 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C202444582 |
| concepts[14].level | 1 |
| concepts[14].score | 0.07262122631072998 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[14].display_name | Pure mathematics |
| concepts[15].id | https://openalex.org/C159985019 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[15].display_name | Composite material |
| concepts[16].id | https://openalex.org/C192562407 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[16].display_name | Materials science |
| concepts[17].id | https://openalex.org/C17744445 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[17].display_name | Political science |
| concepts[18].id | https://openalex.org/C111472728 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[18].display_name | Epistemology |
| concepts[19].id | https://openalex.org/C199539241 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[19].display_name | Law |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| concepts[21].id | https://openalex.org/C94625758 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[21].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6516079902648926 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/representation |
| keywords[1].score | 0.6442226767539978 |
| keywords[1].display_name | Representation (politics) |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.5629650354385376 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/pixel |
| keywords[3].score | 0.5440515875816345 |
| keywords[3].display_name | Pixel |
| keywords[4].id | https://openalex.org/keywords/optical-flow |
| keywords[4].score | 0.48147764801979065 |
| keywords[4].display_name | Optical flow |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4761336147785187 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.46441954374313354 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/equivariant-map |
| keywords[7].score | 0.458562970161438 |
| keywords[7].display_name | Equivariant map |
| keywords[8].id | https://openalex.org/keywords/simple |
| keywords[8].score | 0.4518926441669464 |
| keywords[8].display_name | Simple (philosophy) |
| keywords[9].id | https://openalex.org/keywords/gabor-filter |
| keywords[9].score | 0.44154953956604004 |
| keywords[9].display_name | Gabor filter |
| keywords[10].id | https://openalex.org/keywords/filter |
| keywords[10].score | 0.43061214685440063 |
| keywords[10].display_name | Filter (signal processing) |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.41753122210502625 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/matrix |
| keywords[12].score | 0.4139511287212372 |
| keywords[12].display_name | Matrix (chemical analysis) |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.2910536527633667 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/pure-mathematics |
| keywords[14].score | 0.07262122631072998 |
| keywords[14].display_name | Pure mathematics |
| language | en |
| locations[0].id | doi:10.1609/aaai.v36i6.20622 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/20622/20381 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v36i6.20622 |
| locations[1].id | pmh:oai:infoscience.epfl.ch:300482 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Infoscience (Ecole Polytechnique Fédérale de Lausanne) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | conference proceedings |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | WoS |
| locations[1].landing_page_url | http://infoscience.epfl.ch/record/300482 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5061687942 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2657-2819 |
| authorships[0].author.display_name | Ruiqi Gao |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[0].affiliations[0].raw_affiliation_string | University of California, Los Angeles |
| authorships[0].institutions[0].id | https://openalex.org/I161318765 |
| authorships[0].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Los Angeles |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ruiqi Gao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of California, Los Angeles |
| authorships[1].author.id | https://openalex.org/A5102966958 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6818-7444 |
| authorships[1].author.display_name | Jianwen Xie |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I98301712 |
| authorships[1].affiliations[0].raw_affiliation_string | Baidu Research |
| authorships[1].institutions[0].id | https://openalex.org/I98301712 |
| authorships[1].institutions[0].ror | https://ror.org/03vs3wt56 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I98301712 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Baidu (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jianwen Xie |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Baidu Research |
| authorships[2].author.id | https://openalex.org/A5067080265 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1524-7148 |
| authorships[2].author.display_name | Siyuan Huang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210100255, https://openalex.org/I4392738278 |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing Institute of General Artificial Intelligence |
| authorships[2].institutions[0].id | https://openalex.org/I4392738278 |
| authorships[2].institutions[0].ror | https://ror.org/02kw1ws04 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4392738278 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Beijing Institute for General Artificial Intelligence |
| authorships[2].institutions[1].id | https://openalex.org/I4210100255 |
| authorships[2].institutions[1].ror | https://ror.org/016a74861 |
| authorships[2].institutions[1].type | other |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210100255 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Beijing Academy of Artificial Intelligence |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Siyuan Huang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beijing Institute of General Artificial Intelligence |
| authorships[3].author.id | https://openalex.org/A5078400954 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yufan Ren |
| authorships[3].countries | CH |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I5124864 |
| authorships[3].affiliations[0].raw_affiliation_string | École Polytechnique Fédérale de Lausanne |
| authorships[3].institutions[0].id | https://openalex.org/I5124864 |
| authorships[3].institutions[0].ror | https://ror.org/02s376052 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[3].institutions[0].country_code | CH |
| authorships[3].institutions[0].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yufan Ren |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | École Polytechnique Fédérale de Lausanne |
| authorships[4].author.id | https://openalex.org/A5034228010 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Song‐Chun Zhu |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[4].affiliations[0].raw_affiliation_string | University of California, Los Angeles Beijing Institute of General Artificial Intelligence |
| authorships[4].institutions[0].id | https://openalex.org/I161318765 |
| authorships[4].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of California, Los Angeles |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Song-Chun Zhu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of California, Los Angeles Beijing Institute of General Artificial Intelligence |
| authorships[5].author.id | https://openalex.org/A5042765290 |
| authorships[5].author.orcid | https://orcid.org/0009-0000-6998-8924 |
| authorships[5].author.display_name | Ying Wu |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[5].affiliations[0].raw_affiliation_string | University of California, Los Angeles |
| authorships[5].institutions[0].id | https://openalex.org/I161318765 |
| authorships[5].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of California, Los Angeles |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Ying Nian Wu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of California, Los Angeles |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/20622/20381 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Learning V1 Simple Cells with Vector Representation of Local Content and Matrix Representation of Local Motion |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W2171116555, https://openalex.org/W4281553171, https://openalex.org/W2123374136, https://openalex.org/W2900363363, https://openalex.org/W3098068165, https://openalex.org/W2337415362, https://openalex.org/W4312857205, https://openalex.org/W2740820121, https://openalex.org/W3096301266, https://openalex.org/W121273120 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1609/aaai.v36i6.20622 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/20622/20381 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v36i6.20622 |
| primary_location.id | doi:10.1609/aaai.v36i6.20622 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/20622/20381 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v36i6.20622 |
| publication_date | 2022-06-28 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2108992228, https://openalex.org/W6640067882, https://openalex.org/W2016600726, https://openalex.org/W2137234026, https://openalex.org/W6669964623, https://openalex.org/W1513100184, https://openalex.org/W2006500012, https://openalex.org/W2111446886, https://openalex.org/W2005327238, https://openalex.org/W3171160274, https://openalex.org/W2924793074, https://openalex.org/W6639636519, https://openalex.org/W2150066425, https://openalex.org/W6698183232, https://openalex.org/W2103212315, https://openalex.org/W2157349214, https://openalex.org/W6685155254, https://openalex.org/W2507953016, https://openalex.org/W2198618282, https://openalex.org/W1914401667, https://openalex.org/W2061659108, https://openalex.org/W2090518410, https://openalex.org/W2054074689, https://openalex.org/W3100388886, https://openalex.org/W2770257943, https://openalex.org/W2033118251, https://openalex.org/W2149846926, https://openalex.org/W2145889472, https://openalex.org/W2106346128, https://openalex.org/W2143057036, https://openalex.org/W2115205382, https://openalex.org/W1954638517, https://openalex.org/W2779379590, https://openalex.org/W2091662199, https://openalex.org/W2146444479, https://openalex.org/W37877361, https://openalex.org/W3140274075, https://openalex.org/W1913860614, https://openalex.org/W2105464873, https://openalex.org/W1522301498, https://openalex.org/W4241874243, https://openalex.org/W2302255633, https://openalex.org/W2170610372, https://openalex.org/W4238342127, https://openalex.org/W191001584, https://openalex.org/W4287241426, https://openalex.org/W2953360899, https://openalex.org/W3214161605, https://openalex.org/W2574812808, https://openalex.org/W2560474170, https://openalex.org/W4249254455, https://openalex.org/W2963891416, https://openalex.org/W4247375518, https://openalex.org/W4212764199, https://openalex.org/W2164137768, https://openalex.org/W603908379, https://openalex.org/W764651262, https://openalex.org/W2077035528, https://openalex.org/W2531044305 |
| referenced_works_count | 59 |
| abstract_inverted_index.a | 3, 157, 164 |
| abstract_inverted_index.3D | 76 |
| abstract_inverted_index.as | 10, 107 |
| abstract_inverted_index.by | 17, 64, 93 |
| abstract_inverted_index.in | 21, 33, 74, 140, 155 |
| abstract_inverted_index.is | 105 |
| abstract_inverted_index.it | 108 |
| abstract_inverted_index.of | 49, 52, 59, 126, 131, 137 |
| abstract_inverted_index.on | 30, 171 |
| abstract_inverted_index.or | 159 |
| abstract_inverted_index.to | 85, 111, 151 |
| abstract_inverted_index.we | 144, 167 |
| abstract_inverted_index.(1) | 45 |
| abstract_inverted_index.(2) | 55 |
| abstract_inverted_index.Our | 115 |
| abstract_inverted_index.The | 38, 129 |
| abstract_inverted_index.V1. | 142 |
| abstract_inverted_index.and | 54, 71 |
| abstract_inverted_index.are | 15, 91 |
| abstract_inverted_index.can | 121, 149 |
| abstract_inverted_index.due | 84 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.may | 27 |
| abstract_inverted_index.our | 119 |
| abstract_inverted_index.the | 22, 25, 41, 46, 56, 65, 69, 72, 75, 79, 89, 94, 98, 102, 112, 132, 147 |
| abstract_inverted_index.two | 43 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.Thus | 101 |
| abstract_inverted_index.When | 78 |
| abstract_inverted_index.With | 162 |
| abstract_inverted_index.flow | 173 |
| abstract_inverted_index.hope | 23 |
| abstract_inverted_index.shed | 28 |
| abstract_inverted_index.show | 117 |
| abstract_inverted_index.such | 9, 163 |
| abstract_inverted_index.that | 14, 24, 96, 118, 146 |
| abstract_inverted_index.(V1). | 37 |
| abstract_inverted_index.agent | 70 |
| abstract_inverted_index.cells | 139 |
| abstract_inverted_index.frame | 81 |
| abstract_inverted_index.image | 7, 80 |
| abstract_inverted_index.infer | 152 |
| abstract_inverted_index.learn | 122, 150 |
| abstract_inverted_index.light | 29 |
| abstract_inverted_index.local | 18, 50, 60, 86, 99, 113, 153 |
| abstract_inverted_index.match | 135 |
| abstract_inverted_index.model | 5, 26, 39, 120, 148 |
| abstract_inverted_index.pairs | 8, 125 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.pixel | 19, 61, 87 |
| abstract_inverted_index.those | 136 |
| abstract_inverted_index.video | 12 |
| abstract_inverted_index.caused | 63 |
| abstract_inverted_index.cortex | 36 |
| abstract_inverted_index.either | 156 |
| abstract_inverted_index.filter | 124 |
| abstract_inverted_index.frames | 13 |
| abstract_inverted_index.images | 53 |
| abstract_inverted_index.matrix | 57 |
| abstract_inverted_index.model, | 166 |
| abstract_inverted_index.motion | 31 |
| abstract_inverted_index.scene. | 77 |
| abstract_inverted_index.simple | 138, 165 |
| abstract_inverted_index.varies | 109 |
| abstract_inverted_index.vector | 47, 103 |
| abstract_inverted_index.visual | 35 |
| abstract_inverted_index.Macaque | 141 |
| abstract_inverted_index.achieve | 168 |
| abstract_inverted_index.between | 68 |
| abstract_inverted_index.changes | 83 |
| abstract_inverted_index.couples | 40 |
| abstract_inverted_index.filters | 134 |
| abstract_inverted_index.learned | 133 |
| abstract_inverted_index.manner. | 161 |
| abstract_inverted_index.motions | 67, 154 |
| abstract_inverted_index.objects | 73 |
| abstract_inverted_index.optical | 172 |
| abstract_inverted_index.phases. | 128 |
| abstract_inverted_index.primary | 34 |
| abstract_inverted_index.related | 16 |
| abstract_inverted_index.results | 170 |
| abstract_inverted_index.vectors | 90 |
| abstract_inverted_index.contents | 51 |
| abstract_inverted_index.matrices | 95 |
| abstract_inverted_index.profiles | 130 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.relative | 66 |
| abstract_inverted_index.Moreover, | 143 |
| abstract_inverted_index.according | 110 |
| abstract_inverted_index.following | 42 |
| abstract_inverted_index.represent | 97 |
| abstract_inverted_index.undergoes | 82 |
| abstract_inverted_index.Gabor-like | 123 |
| abstract_inverted_index.multiplied | 92 |
| abstract_inverted_index.perception | 32 |
| abstract_inverted_index.quadrature | 127 |
| abstract_inverted_index.supervised | 158 |
| abstract_inverted_index.competitive | 169 |
| abstract_inverted_index.components: | 44 |
| abstract_inverted_index.consecutive | 11 |
| abstract_inverted_index.demonstrate | 145 |
| abstract_inverted_index.equivariant | 106 |
| abstract_inverted_index.estimation. | 174 |
| abstract_inverted_index.experiments | 116 |
| abstract_inverted_index.unsupervised | 160 |
| abstract_inverted_index.displacements | 62 |
| abstract_inverted_index.displacements, | 20, 88 |
| abstract_inverted_index.displacements. | 100, 114 |
| abstract_inverted_index.representation | 104 |
| abstract_inverted_index.representations | 48, 58 |
| abstract_inverted_index.representational | 4 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.2505711 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |