Leveraging asynchronous federated learning to predict customers financial distress Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.iswa.2022.200064
In recent years, as economic stability is shaking, and the unemployment rate is growing high due to the COVID-19 effect, assigning credit scoring by predicting consumers’ financial conditions has become more crucial. The conventional machine learning (ML) and deep learning approaches need to share customer’s sensitive information with an external credit bureau to generate a prediction model that opens up the door of privacy leakage. A recently invented privacy-preserving distributed ML scheme referred to as Federated learning (FL) enables generating a target model without sharing local information through on-device model training on edge resources. In this paper, we propose an FL-based application to predict customers’ financial issues by constructing a global learning model that is evolved based on the local models of the distributed agents. The local models are generated by the network agents using their on-device data and local resources. We used the FL concept because the learning strategy does not require sharing any data with the server or any other agent that ensures the preservation of customers’ sensitive data. To that end, we enable partial works from the weak agents that eliminate the issue if the model convergence is retarded due to straggler agents. We also leverage asynchronous FL that cut off the extra waiting time during global model generation. We simulated the performance of our FL model considering a popular dataset, Give me Some Credit (Freshcorn, 2017). We evaluated our proposed method considering a a different number of stragglers and setting up various computational tasks (e.g., local epoch, batch size), and simulated the training loss and testing accuracy of the prediction model. Finally, we compared the F1-score of our proposed model with the existing centralized and decentralized approaches. Our results show that our proposed model achieves an almost identical F1-score as like centralized model even when we set up a skew-level of more than 80% and outperforms the state-of-the-art FL models by obtaining an average of 5∼6% higher accuracy when we have resource-constrained agents within a learning environment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.iswa.2022.200064
- OA Status
- gold
- Cited By
- 46
- References
- 58
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4206016309
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4206016309Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.iswa.2022.200064Digital Object Identifier
- Title
-
Leveraging asynchronous federated learning to predict customers financial distressWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-19Full publication date if available
- Authors
-
Ahmed Imteaj, M. Hadi AminiList of authors in order
- Landing page
-
https://doi.org/10.1016/j.iswa.2022.200064Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.iswa.2022.200064Direct OA link when available
- Concepts
-
Computer science, Leverage (statistics), Asynchronous communication, Artificial intelligence, Machine learning, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
46Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 16, 2024: 11, 2023: 13, 2022: 6Per-year citation counts (last 5 years)
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4206016309 |
|---|---|
| doi | https://doi.org/10.1016/j.iswa.2022.200064 |
| ids.doi | https://doi.org/10.1016/j.iswa.2022.200064 |
| ids.openalex | https://openalex.org/W4206016309 |
| fwci | 9.00674573 |
| type | article |
| title | Leveraging asynchronous federated learning to predict customers financial distress |
| biblio.issue | |
| biblio.volume | 14 |
| biblio.last_page | 200064 |
| biblio.first_page | 200064 |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T10270 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9599999785423279 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Blockchain Technology Applications and Security |
| topics[2].id | https://openalex.org/T11652 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9585000276565552 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Imbalanced Data Classification Techniques |
| is_xpac | False |
| apc_list.value | 1500 |
| apc_list.currency | USD |
| apc_list.value_usd | 1500 |
| apc_paid.value | 1500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1500 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8159292936325073 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C153083717 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7500870227813721 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[1].display_name | Leverage (statistics) |
| concepts[2].id | https://openalex.org/C151319957 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5756737589836121 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q752739 |
| concepts[2].display_name | Asynchronous communication |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5113767981529236 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44921281933784485 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C31258907 |
| concepts[5].level | 1 |
| concepts[5].score | 0.16175603866577148 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[5].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8159292936325073 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/leverage |
| keywords[1].score | 0.7500870227813721 |
| keywords[1].display_name | Leverage (statistics) |
| keywords[2].id | https://openalex.org/keywords/asynchronous-communication |
| keywords[2].score | 0.5756737589836121 |
| keywords[2].display_name | Asynchronous communication |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5113767981529236 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.44921281933784485 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/computer-network |
| keywords[5].score | 0.16175603866577148 |
| keywords[5].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.1016/j.iswa.2022.200064 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210234522 |
| locations[0].source.issn | 2667-3053 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2667-3053 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Intelligent Systems with Applications |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Intelligent Systems with Applications |
| locations[0].landing_page_url | https://doi.org/10.1016/j.iswa.2022.200064 |
| locations[1].id | pmh:oai:doaj.org/article:ca1cf895ab6648ab9160b518bb9c51fe |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Intelligent Systems with Applications, Vol 14, Iss , Pp 200064- (2022) |
| locations[1].landing_page_url | https://doaj.org/article/ca1cf895ab6648ab9160b518bb9c51fe |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5077711449 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6975-3997 |
| authorships[0].author.display_name | Ahmed Imteaj |
| authorships[0].countries | US |
| authorships[0].affiliations[0].raw_affiliation_string | Sustainability, Optimization, and Learning for InterDependent networks laboratory (solid lab) |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I19700959 |
| authorships[0].affiliations[1].raw_affiliation_string | Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, Florida 33199, USA |
| authorships[0].institutions[0].id | https://openalex.org/I19700959 |
| authorships[0].institutions[0].ror | https://ror.org/02gz6gg07 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I19700959 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Florida International University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ahmed Imteaj |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, Florida 33199, USA, Sustainability, Optimization, and Learning for InterDependent networks laboratory (solid lab) |
| authorships[1].author.id | https://openalex.org/A5032642808 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2768-3601 |
| authorships[1].author.display_name | M. Hadi Amini |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19700959 |
| authorships[1].affiliations[0].raw_affiliation_string | Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, Florida 33199, USA |
| authorships[1].affiliations[1].raw_affiliation_string | Sustainability, Optimization, and Learning for InterDependent networks laboratory (solid lab) |
| authorships[1].institutions[0].id | https://openalex.org/I19700959 |
| authorships[1].institutions[0].ror | https://ror.org/02gz6gg07 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I19700959 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Florida International University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | M. Hadi Amini |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, Florida 33199, USA, Sustainability, Optimization, and Learning for InterDependent networks laboratory (solid lab) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.iswa.2022.200064 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Leveraging asynchronous federated learning to predict customers financial distress |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4286629047, https://openalex.org/W3046775127, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4313488044, https://openalex.org/W3107602296, https://openalex.org/W3209574120, https://openalex.org/W4312192474 |
| cited_by_count | 46 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 16 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.iswa.2022.200064 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210234522 |
| best_oa_location.source.issn | 2667-3053 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2667-3053 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Intelligent Systems with Applications |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Intelligent Systems with Applications |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.iswa.2022.200064 |
| primary_location.id | doi:10.1016/j.iswa.2022.200064 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210234522 |
| primary_location.source.issn | 2667-3053 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2667-3053 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Intelligent Systems with Applications |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Intelligent Systems with Applications |
| primary_location.landing_page_url | https://doi.org/10.1016/j.iswa.2022.200064 |
| publication_date | 2022-01-19 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2962996339, https://openalex.org/W2733300139, https://openalex.org/W2606916050, https://openalex.org/W6745868421, https://openalex.org/W6759226220, https://openalex.org/W2341983589, https://openalex.org/W2340896621, https://openalex.org/W2773245465, https://openalex.org/W3016839154, https://openalex.org/W6777302698, https://openalex.org/W6788351799, https://openalex.org/W3157640530, https://openalex.org/W3190442156, https://openalex.org/W3182125009, https://openalex.org/W3134611816, https://openalex.org/W1964159032, https://openalex.org/W3081889057, https://openalex.org/W6753301679, https://openalex.org/W2081180521, https://openalex.org/W6755691404, https://openalex.org/W2786070938, https://openalex.org/W3021654819, https://openalex.org/W6759238902, https://openalex.org/W6762879059, https://openalex.org/W3015636663, https://openalex.org/W6728757088, https://openalex.org/W2995022099, https://openalex.org/W6758757267, https://openalex.org/W6785591483, https://openalex.org/W2885647151, https://openalex.org/W6748531385, https://openalex.org/W2989289980, https://openalex.org/W3089655738, https://openalex.org/W3122933656, https://openalex.org/W6783532163, https://openalex.org/W3010957596, https://openalex.org/W2807400484, https://openalex.org/W6799777973, https://openalex.org/W2586297576, https://openalex.org/W2007164296, https://openalex.org/W6786122176, https://openalex.org/W2912213068, https://openalex.org/W4285722492, https://openalex.org/W2802240654, https://openalex.org/W6781332999, https://openalex.org/W4253506168, https://openalex.org/W4229853360, https://openalex.org/W4232196967, https://openalex.org/W4248980851, https://openalex.org/W3038022836, https://openalex.org/W2963819344, https://openalex.org/W2593463961, https://openalex.org/W4294106961, https://openalex.org/W4315746341, https://openalex.org/W2990714382, https://openalex.org/W3095793088, https://openalex.org/W4290994955, https://openalex.org/W3168005049 |
| referenced_works_count | 58 |
| abstract_inverted_index.A | 65 |
| abstract_inverted_index.a | 54, 80, 109, 221, 236, 237, 302, 328 |
| abstract_inverted_index.FL | 144, 200, 218, 312 |
| abstract_inverted_index.In | 0, 94 |
| abstract_inverted_index.ML | 70 |
| abstract_inverted_index.To | 171 |
| abstract_inverted_index.We | 141, 196, 212, 230 |
| abstract_inverted_index.an | 48, 99, 289, 316 |
| abstract_inverted_index.as | 3, 74, 293 |
| abstract_inverted_index.by | 23, 107, 130, 314 |
| abstract_inverted_index.if | 186 |
| abstract_inverted_index.is | 6, 12, 114, 190 |
| abstract_inverted_index.me | 225 |
| abstract_inverted_index.of | 62, 121, 167, 216, 240, 261, 270, 304, 318 |
| abstract_inverted_index.on | 91, 117 |
| abstract_inverted_index.or | 159 |
| abstract_inverted_index.to | 16, 42, 52, 73, 102, 193 |
| abstract_inverted_index.up | 59, 244, 301 |
| abstract_inverted_index.we | 97, 174, 266, 299, 323 |
| abstract_inverted_index.80% | 307 |
| abstract_inverted_index.Our | 281 |
| abstract_inverted_index.The | 32, 125 |
| abstract_inverted_index.and | 8, 37, 138, 242, 253, 258, 278, 308 |
| abstract_inverted_index.any | 154, 160 |
| abstract_inverted_index.are | 128 |
| abstract_inverted_index.cut | 202 |
| abstract_inverted_index.due | 15, 192 |
| abstract_inverted_index.has | 28 |
| abstract_inverted_index.not | 151 |
| abstract_inverted_index.off | 203 |
| abstract_inverted_index.our | 217, 232, 271, 285 |
| abstract_inverted_index.set | 300 |
| abstract_inverted_index.the | 9, 17, 60, 118, 122, 131, 143, 147, 157, 165, 179, 184, 187, 204, 214, 255, 262, 268, 275, 310 |
| abstract_inverted_index.(FL) | 77 |
| abstract_inverted_index.(ML) | 36 |
| abstract_inverted_index.Give | 224 |
| abstract_inverted_index.Some | 226 |
| abstract_inverted_index.also | 197 |
| abstract_inverted_index.data | 137, 155 |
| abstract_inverted_index.deep | 38 |
| abstract_inverted_index.does | 150 |
| abstract_inverted_index.door | 61 |
| abstract_inverted_index.edge | 92 |
| abstract_inverted_index.end, | 173 |
| abstract_inverted_index.even | 297 |
| abstract_inverted_index.from | 178 |
| abstract_inverted_index.have | 324 |
| abstract_inverted_index.high | 14 |
| abstract_inverted_index.like | 294 |
| abstract_inverted_index.loss | 257 |
| abstract_inverted_index.more | 30, 305 |
| abstract_inverted_index.need | 41 |
| abstract_inverted_index.rate | 11 |
| abstract_inverted_index.show | 283 |
| abstract_inverted_index.than | 306 |
| abstract_inverted_index.that | 57, 113, 163, 172, 182, 201, 284 |
| abstract_inverted_index.this | 95 |
| abstract_inverted_index.time | 207 |
| abstract_inverted_index.used | 142 |
| abstract_inverted_index.weak | 180 |
| abstract_inverted_index.when | 298, 322 |
| abstract_inverted_index.with | 47, 156, 274 |
| abstract_inverted_index.agent | 162 |
| abstract_inverted_index.based | 116 |
| abstract_inverted_index.batch | 251 |
| abstract_inverted_index.data. | 170 |
| abstract_inverted_index.extra | 205 |
| abstract_inverted_index.issue | 185 |
| abstract_inverted_index.local | 85, 119, 126, 139, 249 |
| abstract_inverted_index.model | 56, 82, 89, 112, 188, 210, 219, 273, 287, 296 |
| abstract_inverted_index.opens | 58 |
| abstract_inverted_index.other | 161 |
| abstract_inverted_index.share | 43 |
| abstract_inverted_index.tasks | 247 |
| abstract_inverted_index.their | 135 |
| abstract_inverted_index.using | 134 |
| abstract_inverted_index.works | 177 |
| abstract_inverted_index.(e.g., | 248 |
| abstract_inverted_index.2017). | 229 |
| abstract_inverted_index.5∼6% | 319 |
| abstract_inverted_index.Credit | 227 |
| abstract_inverted_index.agents | 133, 181, 326 |
| abstract_inverted_index.almost | 290 |
| abstract_inverted_index.become | 29 |
| abstract_inverted_index.bureau | 51 |
| abstract_inverted_index.credit | 21, 50 |
| abstract_inverted_index.during | 208 |
| abstract_inverted_index.enable | 175 |
| abstract_inverted_index.epoch, | 250 |
| abstract_inverted_index.global | 110, 209 |
| abstract_inverted_index.higher | 320 |
| abstract_inverted_index.issues | 106 |
| abstract_inverted_index.method | 234 |
| abstract_inverted_index.model. | 264 |
| abstract_inverted_index.models | 120, 127, 313 |
| abstract_inverted_index.number | 239 |
| abstract_inverted_index.paper, | 96 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.scheme | 71 |
| abstract_inverted_index.server | 158 |
| abstract_inverted_index.size), | 252 |
| abstract_inverted_index.target | 81 |
| abstract_inverted_index.within | 327 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.agents. | 124, 195 |
| abstract_inverted_index.average | 317 |
| abstract_inverted_index.because | 146 |
| abstract_inverted_index.concept | 145 |
| abstract_inverted_index.effect, | 19 |
| abstract_inverted_index.enables | 78 |
| abstract_inverted_index.ensures | 164 |
| abstract_inverted_index.evolved | 115 |
| abstract_inverted_index.growing | 13 |
| abstract_inverted_index.machine | 34 |
| abstract_inverted_index.network | 132 |
| abstract_inverted_index.partial | 176 |
| abstract_inverted_index.popular | 222 |
| abstract_inverted_index.predict | 103 |
| abstract_inverted_index.privacy | 63 |
| abstract_inverted_index.propose | 98 |
| abstract_inverted_index.require | 152 |
| abstract_inverted_index.results | 282 |
| abstract_inverted_index.scoring | 22 |
| abstract_inverted_index.setting | 243 |
| abstract_inverted_index.sharing | 84, 153 |
| abstract_inverted_index.testing | 259 |
| abstract_inverted_index.through | 87 |
| abstract_inverted_index.various | 245 |
| abstract_inverted_index.waiting | 206 |
| abstract_inverted_index.without | 83 |
| abstract_inverted_index.COVID-19 | 18 |
| abstract_inverted_index.F1-score | 269, 292 |
| abstract_inverted_index.FL-based | 100 |
| abstract_inverted_index.Finally, | 265 |
| abstract_inverted_index.accuracy | 260, 321 |
| abstract_inverted_index.achieves | 288 |
| abstract_inverted_index.compared | 267 |
| abstract_inverted_index.crucial. | 31 |
| abstract_inverted_index.dataset, | 223 |
| abstract_inverted_index.economic | 4 |
| abstract_inverted_index.existing | 276 |
| abstract_inverted_index.external | 49 |
| abstract_inverted_index.generate | 53 |
| abstract_inverted_index.invented | 67 |
| abstract_inverted_index.leakage. | 64 |
| abstract_inverted_index.learning | 35, 39, 76, 111, 148, 329 |
| abstract_inverted_index.leverage | 198 |
| abstract_inverted_index.proposed | 233, 272, 286 |
| abstract_inverted_index.recently | 66 |
| abstract_inverted_index.referred | 72 |
| abstract_inverted_index.retarded | 191 |
| abstract_inverted_index.shaking, | 7 |
| abstract_inverted_index.strategy | 149 |
| abstract_inverted_index.training | 90, 256 |
| abstract_inverted_index.Federated | 75 |
| abstract_inverted_index.assigning | 20 |
| abstract_inverted_index.different | 238 |
| abstract_inverted_index.eliminate | 183 |
| abstract_inverted_index.evaluated | 231 |
| abstract_inverted_index.financial | 26, 105 |
| abstract_inverted_index.generated | 129 |
| abstract_inverted_index.identical | 291 |
| abstract_inverted_index.obtaining | 315 |
| abstract_inverted_index.on-device | 88, 136 |
| abstract_inverted_index.sensitive | 45, 169 |
| abstract_inverted_index.simulated | 213, 254 |
| abstract_inverted_index.stability | 5 |
| abstract_inverted_index.straggler | 194 |
| abstract_inverted_index.approaches | 40 |
| abstract_inverted_index.conditions | 27 |
| abstract_inverted_index.generating | 79 |
| abstract_inverted_index.predicting | 24 |
| abstract_inverted_index.prediction | 55, 263 |
| abstract_inverted_index.resources. | 93, 140 |
| abstract_inverted_index.skew-level | 303 |
| abstract_inverted_index.stragglers | 241 |
| abstract_inverted_index.(Freshcorn, | 228 |
| abstract_inverted_index.application | 101 |
| abstract_inverted_index.approaches. | 280 |
| abstract_inverted_index.centralized | 277, 295 |
| abstract_inverted_index.considering | 220, 235 |
| abstract_inverted_index.convergence | 189 |
| abstract_inverted_index.distributed | 69, 123 |
| abstract_inverted_index.generation. | 211 |
| abstract_inverted_index.information | 46, 86 |
| abstract_inverted_index.outperforms | 309 |
| abstract_inverted_index.performance | 215 |
| abstract_inverted_index.asynchronous | 199 |
| abstract_inverted_index.constructing | 108 |
| abstract_inverted_index.consumers’ | 25 |
| abstract_inverted_index.conventional | 33 |
| abstract_inverted_index.customers’ | 104, 168 |
| abstract_inverted_index.customer’s | 44 |
| abstract_inverted_index.environment. | 330 |
| abstract_inverted_index.preservation | 166 |
| abstract_inverted_index.unemployment | 10 |
| abstract_inverted_index.computational | 246 |
| abstract_inverted_index.decentralized | 279 |
| abstract_inverted_index.state-of-the-art | 311 |
| abstract_inverted_index.privacy-preserving | 68 |
| abstract_inverted_index.resource-constrained | 325 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5077711449 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I19700959 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.97191565 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |