Leveraging Attribute Interaction and Self-Training for Graph Alignment via Optimal Transport Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/math13121971
Unsupervised alignment of two attributed graphs finds the node correspondence between them without any known anchor links. The recently proposed optimal transport (OT)-based approaches tackle this problem via Gromov–Wasserstein distance and joint learning of graph structures and node attributes, which achieve better accuracy and stability compared to previous embedding-based methods. However, it remains largely unexplored under the OT framework to fully utilize both structure and attribute information. We propose an Optimal Transport-based Graph Alignment method with Attribute Interaction and Self-Training (PORTRAIT), with the following two contributions. First, we enable the interaction of different dimensions of node attributes in the Gromov–Wasserstein learning process, while simultaneously integrating multi-layer graph structural information and node embeddings into the design of the intra-graph cost, which yields more expressive power with theoretical guarantee. Second, the self-training strategy is integrated into the OT-based learning process to significantly enhance node alignment accuracy with the help of confident predictions. Extensive experimental results validate the efficacy of the proposed model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math13121971
- https://www.mdpi.com/2227-7390/13/12/1971/pdf?version=1750067447
- OA Status
- gold
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411327855
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411327855Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math13121971Digital Object Identifier
- Title
-
Leveraging Attribute Interaction and Self-Training for Graph Alignment via Optimal TransportWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-15Full publication date if available
- Authors
-
Songyang Chen, Youfang Lin, Zhoumo Zeng, Mengyang XueList of authors in order
- Landing page
-
https://doi.org/10.3390/math13121971Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-7390/13/12/1971/pdf?version=1750067447Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-7390/13/12/1971/pdf?version=1750067447Direct OA link when available
- Concepts
-
Computer science, Graph, Training (meteorology), Artificial intelligence, Human–computer interaction, Theoretical computer science, Physics, MeteorologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411327855 |
|---|---|
| doi | https://doi.org/10.3390/math13121971 |
| ids.doi | https://doi.org/10.3390/math13121971 |
| ids.openalex | https://openalex.org/W4411327855 |
| fwci | 0.0 |
| type | article |
| title | Leveraging Attribute Interaction and Self-Training for Graph Alignment via Optimal Transport |
| biblio.issue | 12 |
| biblio.volume | 13 |
| biblio.last_page | 1971 |
| biblio.first_page | 1971 |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9936000108718872 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T12292 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9724000096321106 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Graph Theory and Algorithms |
| topics[2].id | https://openalex.org/T10203 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9695000052452087 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Recommender Systems and Techniques |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5979068875312805 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C132525143 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5576368570327759 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[1].display_name | Graph |
| concepts[2].id | https://openalex.org/C2777211547 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4813412129878998 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[2].display_name | Training (meteorology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.37540769577026367 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C107457646 |
| concepts[4].level | 1 |
| concepts[4].score | 0.35827261209487915 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[4].display_name | Human–computer interaction |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2795896828174591 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.08824920654296875 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C153294291 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[7].display_name | Meteorology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5979068875312805 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/graph |
| keywords[1].score | 0.5576368570327759 |
| keywords[1].display_name | Graph |
| keywords[2].id | https://openalex.org/keywords/training |
| keywords[2].score | 0.4813412129878998 |
| keywords[2].display_name | Training (meteorology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.37540769577026367 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[4].score | 0.35827261209487915 |
| keywords[4].display_name | Human–computer interaction |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.2795896828174591 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.08824920654296875 |
| keywords[6].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/math13121971 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-7390/13/12/1971/pdf?version=1750067447 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math13121971 |
| locations[1].id | pmh:oai:doaj.org/article:55f210cefa96488e8e158722308ab181 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 13, Iss 12, p 1971 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/55f210cefa96488e8e158722308ab181 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5113009061 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Songyang Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China |
| authorships[0].institutions[0].id | https://openalex.org/I21193070 |
| authorships[0].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Songyang Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China |
| authorships[1].author.id | https://openalex.org/A5013548083 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5143-3645 |
| authorships[1].author.display_name | Youfang Lin |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China |
| authorships[1].institutions[0].id | https://openalex.org/I21193070 |
| authorships[1].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Youfang Lin |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China |
| authorships[2].author.id | https://openalex.org/A5051637055 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8220-598X |
| authorships[2].author.display_name | Zhoumo Zeng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China |
| authorships[2].institutions[0].id | https://openalex.org/I21193070 |
| authorships[2].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing Jiaotong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ziyuan Zeng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China |
| authorships[3].author.id | https://openalex.org/A5004255388 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4664-8200 |
| authorships[3].author.display_name | Mengyang Xue |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China |
| authorships[3].institutions[0].id | https://openalex.org/I21193070 |
| authorships[3].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Jiaotong University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Mengyang Xue |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-7390/13/12/1971/pdf?version=1750067447 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Leveraging Attribute Interaction and Self-Training for Graph Alignment via Optimal Transport |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9936000108718872 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W230091440, https://openalex.org/W2390279801, https://openalex.org/W2233261550, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2810751659 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/math13121971 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-7390/13/12/1971/pdf?version=1750067447 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math13121971 |
| primary_location.id | doi:10.3390/math13121971 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-7390/13/12/1971/pdf?version=1750067447 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math13121971 |
| publication_date | 2025-06-15 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2004234600, https://openalex.org/W3184199734, https://openalex.org/W2127607093, https://openalex.org/W2564310132, https://openalex.org/W2604318990, https://openalex.org/W2022322548, https://openalex.org/W3170451879, https://openalex.org/W4320039080, https://openalex.org/W4389146766, https://openalex.org/W4367046806, https://openalex.org/W4385284171, https://openalex.org/W3171051766, https://openalex.org/W2914547623, https://openalex.org/W3080274717, https://openalex.org/W3030424116, https://openalex.org/W4386469831, https://openalex.org/W4233762729, https://openalex.org/W2027842533, https://openalex.org/W3197089777, https://openalex.org/W2391555403, https://openalex.org/W4206471589, https://openalex.org/W2027982384, https://openalex.org/W2891773754, https://openalex.org/W2735272571, https://openalex.org/W2888657195, https://openalex.org/W2890187992, https://openalex.org/W2551361256, https://openalex.org/W2789134258, https://openalex.org/W2913224127, https://openalex.org/W2966126249, https://openalex.org/W2914268208, https://openalex.org/W2964263523, https://openalex.org/W2985032289, https://openalex.org/W2808254354, https://openalex.org/W2962916648, https://openalex.org/W2962819988, https://openalex.org/W4407986287, https://openalex.org/W2808284704, https://openalex.org/W4368283499, https://openalex.org/W3156850293, https://openalex.org/W1974682889, https://openalex.org/W2803312888, https://openalex.org/W2056124433, https://openalex.org/W4224316123, https://openalex.org/W4313829323 |
| referenced_works_count | 45 |
| abstract_inverted_index.OT | 57 |
| abstract_inverted_index.We | 67 |
| abstract_inverted_index.an | 69 |
| abstract_inverted_index.in | 97 |
| abstract_inverted_index.is | 131 |
| abstract_inverted_index.it | 51 |
| abstract_inverted_index.of | 2, 33, 91, 94, 115, 147, 156 |
| abstract_inverted_index.to | 46, 59, 138 |
| abstract_inverted_index.we | 87 |
| abstract_inverted_index.The | 17 |
| abstract_inverted_index.and | 30, 36, 43, 64, 78, 109 |
| abstract_inverted_index.any | 13 |
| abstract_inverted_index.the | 7, 56, 82, 89, 98, 113, 116, 128, 134, 145, 154, 157 |
| abstract_inverted_index.two | 3, 84 |
| abstract_inverted_index.via | 27 |
| abstract_inverted_index.both | 62 |
| abstract_inverted_index.help | 146 |
| abstract_inverted_index.into | 112, 133 |
| abstract_inverted_index.more | 121 |
| abstract_inverted_index.node | 8, 37, 95, 110, 141 |
| abstract_inverted_index.them | 11 |
| abstract_inverted_index.this | 25 |
| abstract_inverted_index.with | 75, 81, 124, 144 |
| abstract_inverted_index.Graph | 72 |
| abstract_inverted_index.cost, | 118 |
| abstract_inverted_index.finds | 6 |
| abstract_inverted_index.fully | 60 |
| abstract_inverted_index.graph | 34, 106 |
| abstract_inverted_index.joint | 31 |
| abstract_inverted_index.known | 14 |
| abstract_inverted_index.power | 123 |
| abstract_inverted_index.under | 55 |
| abstract_inverted_index.which | 39, 119 |
| abstract_inverted_index.while | 102 |
| abstract_inverted_index.First, | 86 |
| abstract_inverted_index.anchor | 15 |
| abstract_inverted_index.better | 41 |
| abstract_inverted_index.design | 114 |
| abstract_inverted_index.enable | 88 |
| abstract_inverted_index.graphs | 5 |
| abstract_inverted_index.links. | 16 |
| abstract_inverted_index.method | 74 |
| abstract_inverted_index.model. | 159 |
| abstract_inverted_index.tackle | 24 |
| abstract_inverted_index.yields | 120 |
| abstract_inverted_index.Optimal | 70 |
| abstract_inverted_index.Second, | 127 |
| abstract_inverted_index.achieve | 40 |
| abstract_inverted_index.between | 10 |
| abstract_inverted_index.enhance | 140 |
| abstract_inverted_index.largely | 53 |
| abstract_inverted_index.optimal | 20 |
| abstract_inverted_index.problem | 26 |
| abstract_inverted_index.process | 137 |
| abstract_inverted_index.propose | 68 |
| abstract_inverted_index.remains | 52 |
| abstract_inverted_index.results | 152 |
| abstract_inverted_index.utilize | 61 |
| abstract_inverted_index.without | 12 |
| abstract_inverted_index.However, | 50 |
| abstract_inverted_index.OT-based | 135 |
| abstract_inverted_index.accuracy | 42, 143 |
| abstract_inverted_index.compared | 45 |
| abstract_inverted_index.distance | 29 |
| abstract_inverted_index.efficacy | 155 |
| abstract_inverted_index.learning | 32, 100, 136 |
| abstract_inverted_index.methods. | 49 |
| abstract_inverted_index.previous | 47 |
| abstract_inverted_index.process, | 101 |
| abstract_inverted_index.proposed | 19, 158 |
| abstract_inverted_index.recently | 18 |
| abstract_inverted_index.strategy | 130 |
| abstract_inverted_index.validate | 153 |
| abstract_inverted_index.Alignment | 73 |
| abstract_inverted_index.Attribute | 76 |
| abstract_inverted_index.Extensive | 150 |
| abstract_inverted_index.alignment | 1, 142 |
| abstract_inverted_index.attribute | 65 |
| abstract_inverted_index.confident | 148 |
| abstract_inverted_index.different | 92 |
| abstract_inverted_index.following | 83 |
| abstract_inverted_index.framework | 58 |
| abstract_inverted_index.stability | 44 |
| abstract_inverted_index.structure | 63 |
| abstract_inverted_index.transport | 21 |
| abstract_inverted_index.(OT)-based | 22 |
| abstract_inverted_index.approaches | 23 |
| abstract_inverted_index.attributed | 4 |
| abstract_inverted_index.attributes | 96 |
| abstract_inverted_index.dimensions | 93 |
| abstract_inverted_index.embeddings | 111 |
| abstract_inverted_index.expressive | 122 |
| abstract_inverted_index.guarantee. | 126 |
| abstract_inverted_index.integrated | 132 |
| abstract_inverted_index.structural | 107 |
| abstract_inverted_index.structures | 35 |
| abstract_inverted_index.unexplored | 54 |
| abstract_inverted_index.(PORTRAIT), | 80 |
| abstract_inverted_index.Interaction | 77 |
| abstract_inverted_index.attributes, | 38 |
| abstract_inverted_index.information | 108 |
| abstract_inverted_index.integrating | 104 |
| abstract_inverted_index.interaction | 90 |
| abstract_inverted_index.intra-graph | 117 |
| abstract_inverted_index.multi-layer | 105 |
| abstract_inverted_index.theoretical | 125 |
| abstract_inverted_index.Unsupervised | 0 |
| abstract_inverted_index.experimental | 151 |
| abstract_inverted_index.information. | 66 |
| abstract_inverted_index.predictions. | 149 |
| abstract_inverted_index.Self-Training | 79 |
| abstract_inverted_index.self-training | 129 |
| abstract_inverted_index.significantly | 139 |
| abstract_inverted_index.contributions. | 85 |
| abstract_inverted_index.correspondence | 9 |
| abstract_inverted_index.simultaneously | 103 |
| abstract_inverted_index.Transport-based | 71 |
| abstract_inverted_index.embedding-based | 48 |
| abstract_inverted_index.Gromov–Wasserstein | 28, 99 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5013548083 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I21193070 |
| citation_normalized_percentile.value | 0.09907036 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |