Leveraging Citizen Science for Flood Extent Detection using Machine Learning Benchmark Dataset Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2311.09276
Accurate detection of inundated water extents during flooding events is crucial in emergency response decisions and aids in recovery efforts. Satellite Remote Sensing data provides a global framework for detecting flooding extents. Specifically, Sentinel-1 C-Band Synthetic Aperture Radar (SAR) imagery has proven to be useful in detecting water bodies due to low backscatter of water features in both co-polarized and cross-polarized SAR imagery. However, increased backscatter can be observed in certain flooded regions such as presence of infrastructure and trees - rendering simple methods such as pixel intensity thresholding and time-series differencing inadequate. Machine Learning techniques has been leveraged to precisely capture flood extents in flooded areas with bumps in backscatter but needs high amounts of labelled data to work desirably. Hence, we created a labeled known water body extent and flooded area extents during known flooding events covering about 36,000 sq. kilometers of regions within mainland U.S and Bangladesh. Further, We also leveraged citizen science by open-sourcing the dataset and hosting an open competition based on the dataset to rapidly prototype flood extent detection using community generated models. In this paper we present the information about the dataset, the data processing pipeline, a baseline model and the details about the competition, along with discussion on winning approaches. We believe the dataset adds to already existing datasets based on Sentinel-1C SAR data and leads to more robust modeling of flood extents. We also hope the results from the competition pushes the research in flood extent detection further.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2311.09276
- https://arxiv.org/pdf/2311.09276
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388787360
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388787360Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2311.09276Digital Object Identifier
- Title
-
Leveraging Citizen Science for Flood Extent Detection using Machine Learning Benchmark DatasetWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-15Full publication date if available
- Authors
-
Muthukumaran Ramasubramanian, Iksha Gurung, Shubhankar Gahlot, Ronny Hänsch, Andrew Molthan, Manil MaskeyList of authors in order
- Landing page
-
https://arxiv.org/abs/2311.09276Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2311.09276Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2311.09276Direct OA link when available
- Concepts
-
Flood myth, Synthetic aperture radar, Remote sensing, Computer science, Flooding (psychology), Rendering (computer graphics), Hyperspectral imaging, Baseline (sea), Backscatter (email), Machine learning, Environmental science, Artificial intelligence, Geography, Geology, Telecommunications, Oceanography, Psychology, Psychotherapist, Archaeology, WirelessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388787360 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2311.09276 |
| ids.doi | https://doi.org/10.48550/arxiv.2311.09276 |
| ids.openalex | https://openalex.org/W4388787360 |
| fwci | |
| type | preprint |
| title | Leveraging Citizen Science for Flood Extent Detection using Machine Learning Benchmark Dataset |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10930 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Flood Risk Assessment and Management |
| topics[1].id | https://openalex.org/T11483 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9871000051498413 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Tropical and Extratropical Cyclones Research |
| topics[2].id | https://openalex.org/T11234 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9865999817848206 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Precipitation Measurement and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C74256435 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6600794792175293 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q134052 |
| concepts[0].display_name | Flood myth |
| concepts[1].id | https://openalex.org/C87360688 |
| concepts[1].level | 2 |
| concepts[1].score | 0.659259021282196 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q740686 |
| concepts[1].display_name | Synthetic aperture radar |
| concepts[2].id | https://openalex.org/C62649853 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5908469557762146 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[2].display_name | Remote sensing |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5754085779190063 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C186594467 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5620837807655334 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1429176 |
| concepts[4].display_name | Flooding (psychology) |
| concepts[5].id | https://openalex.org/C205711294 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4476548433303833 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[5].display_name | Rendering (computer graphics) |
| concepts[6].id | https://openalex.org/C159078339 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4416262209415436 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[6].display_name | Hyperspectral imaging |
| concepts[7].id | https://openalex.org/C12725497 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4333266019821167 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q810247 |
| concepts[7].display_name | Baseline (sea) |
| concepts[8].id | https://openalex.org/C30354325 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4168439507484436 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q204667 |
| concepts[8].display_name | Backscatter (email) |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4104403257369995 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C39432304 |
| concepts[10].level | 0 |
| concepts[10].score | 0.4000885784626007 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[10].display_name | Environmental science |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.38412490487098694 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.20029297471046448 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C127313418 |
| concepts[13].level | 0 |
| concepts[13].score | 0.19492989778518677 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[13].display_name | Geology |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.12171927094459534 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| concepts[15].id | https://openalex.org/C111368507 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[15].display_name | Oceanography |
| concepts[16].id | https://openalex.org/C15744967 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[16].display_name | Psychology |
| concepts[17].id | https://openalex.org/C542102704 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[17].display_name | Psychotherapist |
| concepts[18].id | https://openalex.org/C166957645 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[18].display_name | Archaeology |
| concepts[19].id | https://openalex.org/C555944384 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[19].display_name | Wireless |
| keywords[0].id | https://openalex.org/keywords/flood-myth |
| keywords[0].score | 0.6600794792175293 |
| keywords[0].display_name | Flood myth |
| keywords[1].id | https://openalex.org/keywords/synthetic-aperture-radar |
| keywords[1].score | 0.659259021282196 |
| keywords[1].display_name | Synthetic aperture radar |
| keywords[2].id | https://openalex.org/keywords/remote-sensing |
| keywords[2].score | 0.5908469557762146 |
| keywords[2].display_name | Remote sensing |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5754085779190063 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/flooding |
| keywords[4].score | 0.5620837807655334 |
| keywords[4].display_name | Flooding (psychology) |
| keywords[5].id | https://openalex.org/keywords/rendering |
| keywords[5].score | 0.4476548433303833 |
| keywords[5].display_name | Rendering (computer graphics) |
| keywords[6].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[6].score | 0.4416262209415436 |
| keywords[6].display_name | Hyperspectral imaging |
| keywords[7].id | https://openalex.org/keywords/baseline |
| keywords[7].score | 0.4333266019821167 |
| keywords[7].display_name | Baseline (sea) |
| keywords[8].id | https://openalex.org/keywords/backscatter |
| keywords[8].score | 0.4168439507484436 |
| keywords[8].display_name | Backscatter (email) |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4104403257369995 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/environmental-science |
| keywords[10].score | 0.4000885784626007 |
| keywords[10].display_name | Environmental science |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.38412490487098694 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.20029297471046448 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/geology |
| keywords[13].score | 0.19492989778518677 |
| keywords[13].display_name | Geology |
| keywords[14].id | https://openalex.org/keywords/telecommunications |
| keywords[14].score | 0.12171927094459534 |
| keywords[14].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2311.09276 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2311.09276 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2311.09276 |
| locations[1].id | doi:10.48550/arxiv.2311.09276 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2311.09276 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5024141403 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5293-8349 |
| authorships[0].author.display_name | Muthukumaran Ramasubramanian |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ramasubramanian, Muthukumaran |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5032520715 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5124-8856 |
| authorships[1].author.display_name | Iksha Gurung |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gurung, Iksha |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5047544158 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8791-1779 |
| authorships[2].author.display_name | Shubhankar Gahlot |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gahlot, Shubhankar |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5025073736 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2936-6765 |
| authorships[3].author.display_name | Ronny Hänsch |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hänsch, Ronny |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5067660871 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Andrew Molthan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Molthan, Andrew L. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5002530990 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5087-6903 |
| authorships[5].author.display_name | Manil Maskey |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Maskey, Manil |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2311.09276 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Leveraging Citizen Science for Flood Extent Detection using Machine Learning Benchmark Dataset |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10930 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Flood Risk Assessment and Management |
| related_works | https://openalex.org/W2072166414, https://openalex.org/W3209970181, https://openalex.org/W2060875994, https://openalex.org/W3034375524, https://openalex.org/W4230131218, https://openalex.org/W2070598848, https://openalex.org/W2044184146, https://openalex.org/W4313014865, https://openalex.org/W2019190440, https://openalex.org/W2343470940 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2311.09276 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2311.09276 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2311.09276 |
| primary_location.id | pmh:oai:arXiv.org:2311.09276 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2311.09276 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2311.09276 |
| publication_date | 2023-11-15 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 80 |
| abstract_inverted_index.a | 25, 124, 193 |
| abstract_inverted_index.In | 179 |
| abstract_inverted_index.We | 151, 208, 231 |
| abstract_inverted_index.an | 162 |
| abstract_inverted_index.as | 74, 85 |
| abstract_inverted_index.be | 43, 67 |
| abstract_inverted_index.by | 156 |
| abstract_inverted_index.in | 11, 17, 45, 56, 69, 104, 109, 242 |
| abstract_inverted_index.is | 9 |
| abstract_inverted_index.of | 2, 53, 76, 115, 143, 228 |
| abstract_inverted_index.on | 166, 205, 218 |
| abstract_inverted_index.to | 42, 50, 99, 118, 169, 213, 224 |
| abstract_inverted_index.we | 122, 182 |
| abstract_inverted_index.SAR | 61, 220 |
| abstract_inverted_index.U.S | 147 |
| abstract_inverted_index.and | 15, 59, 78, 89, 130, 148, 160, 196, 222 |
| abstract_inverted_index.but | 111 |
| abstract_inverted_index.can | 66 |
| abstract_inverted_index.due | 49 |
| abstract_inverted_index.for | 28 |
| abstract_inverted_index.has | 40, 96 |
| abstract_inverted_index.low | 51 |
| abstract_inverted_index.sq. | 141 |
| abstract_inverted_index.the | 158, 167, 184, 187, 189, 197, 200, 210, 234, 237, 240 |
| abstract_inverted_index.adds | 212 |
| abstract_inverted_index.aids | 16 |
| abstract_inverted_index.also | 152, 232 |
| abstract_inverted_index.area | 132 |
| abstract_inverted_index.been | 97 |
| abstract_inverted_index.body | 128 |
| abstract_inverted_index.both | 57 |
| abstract_inverted_index.data | 23, 117, 190, 221 |
| abstract_inverted_index.from | 236 |
| abstract_inverted_index.high | 113 |
| abstract_inverted_index.hope | 233 |
| abstract_inverted_index.more | 225 |
| abstract_inverted_index.open | 163 |
| abstract_inverted_index.such | 73, 84 |
| abstract_inverted_index.this | 180 |
| abstract_inverted_index.with | 107, 203 |
| abstract_inverted_index.work | 119 |
| abstract_inverted_index.(SAR) | 38 |
| abstract_inverted_index.Radar | 37 |
| abstract_inverted_index.about | 139, 186, 199 |
| abstract_inverted_index.along | 202 |
| abstract_inverted_index.areas | 106 |
| abstract_inverted_index.based | 165, 217 |
| abstract_inverted_index.bumps | 108 |
| abstract_inverted_index.flood | 102, 172, 229, 243 |
| abstract_inverted_index.known | 126, 135 |
| abstract_inverted_index.leads | 223 |
| abstract_inverted_index.model | 195 |
| abstract_inverted_index.needs | 112 |
| abstract_inverted_index.paper | 181 |
| abstract_inverted_index.pixel | 86 |
| abstract_inverted_index.trees | 79 |
| abstract_inverted_index.using | 175 |
| abstract_inverted_index.water | 4, 47, 54, 127 |
| abstract_inverted_index.36,000 | 140 |
| abstract_inverted_index.C-Band | 34 |
| abstract_inverted_index.Hence, | 121 |
| abstract_inverted_index.Remote | 21 |
| abstract_inverted_index.bodies | 48 |
| abstract_inverted_index.during | 6, 134 |
| abstract_inverted_index.events | 8, 137 |
| abstract_inverted_index.extent | 129, 173, 244 |
| abstract_inverted_index.global | 26 |
| abstract_inverted_index.proven | 41 |
| abstract_inverted_index.pushes | 239 |
| abstract_inverted_index.robust | 226 |
| abstract_inverted_index.simple | 82 |
| abstract_inverted_index.useful | 44 |
| abstract_inverted_index.within | 145 |
| abstract_inverted_index.Machine | 93 |
| abstract_inverted_index.Sensing | 22 |
| abstract_inverted_index.already | 214 |
| abstract_inverted_index.amounts | 114 |
| abstract_inverted_index.believe | 209 |
| abstract_inverted_index.capture | 101 |
| abstract_inverted_index.certain | 70 |
| abstract_inverted_index.citizen | 154 |
| abstract_inverted_index.created | 123 |
| abstract_inverted_index.crucial | 10 |
| abstract_inverted_index.dataset | 159, 168, 211 |
| abstract_inverted_index.details | 198 |
| abstract_inverted_index.extents | 5, 103, 133 |
| abstract_inverted_index.flooded | 71, 105, 131 |
| abstract_inverted_index.hosting | 161 |
| abstract_inverted_index.imagery | 39 |
| abstract_inverted_index.labeled | 125 |
| abstract_inverted_index.methods | 83 |
| abstract_inverted_index.models. | 178 |
| abstract_inverted_index.present | 183 |
| abstract_inverted_index.rapidly | 170 |
| abstract_inverted_index.regions | 72, 144 |
| abstract_inverted_index.results | 235 |
| abstract_inverted_index.science | 155 |
| abstract_inverted_index.winning | 206 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.Aperture | 36 |
| abstract_inverted_index.Further, | 150 |
| abstract_inverted_index.However, | 63 |
| abstract_inverted_index.Learning | 94 |
| abstract_inverted_index.baseline | 194 |
| abstract_inverted_index.covering | 138 |
| abstract_inverted_index.dataset, | 188 |
| abstract_inverted_index.datasets | 216 |
| abstract_inverted_index.efforts. | 19 |
| abstract_inverted_index.existing | 215 |
| abstract_inverted_index.extents. | 31, 230 |
| abstract_inverted_index.features | 55 |
| abstract_inverted_index.flooding | 7, 30, 136 |
| abstract_inverted_index.further. | 246 |
| abstract_inverted_index.imagery. | 62 |
| abstract_inverted_index.labelled | 116 |
| abstract_inverted_index.mainland | 146 |
| abstract_inverted_index.modeling | 227 |
| abstract_inverted_index.observed | 68 |
| abstract_inverted_index.presence | 75 |
| abstract_inverted_index.provides | 24 |
| abstract_inverted_index.recovery | 18 |
| abstract_inverted_index.research | 241 |
| abstract_inverted_index.response | 13 |
| abstract_inverted_index.Satellite | 20 |
| abstract_inverted_index.Synthetic | 35 |
| abstract_inverted_index.community | 176 |
| abstract_inverted_index.decisions | 14 |
| abstract_inverted_index.detecting | 29, 46 |
| abstract_inverted_index.detection | 1, 174, 245 |
| abstract_inverted_index.emergency | 12 |
| abstract_inverted_index.framework | 27 |
| abstract_inverted_index.generated | 177 |
| abstract_inverted_index.increased | 64 |
| abstract_inverted_index.intensity | 87 |
| abstract_inverted_index.inundated | 3 |
| abstract_inverted_index.leveraged | 98, 153 |
| abstract_inverted_index.pipeline, | 192 |
| abstract_inverted_index.precisely | 100 |
| abstract_inverted_index.prototype | 171 |
| abstract_inverted_index.rendering | 81 |
| abstract_inverted_index.Sentinel-1 | 33 |
| abstract_inverted_index.desirably. | 120 |
| abstract_inverted_index.discussion | 204 |
| abstract_inverted_index.kilometers | 142 |
| abstract_inverted_index.processing | 191 |
| abstract_inverted_index.techniques | 95 |
| abstract_inverted_index.Bangladesh. | 149 |
| abstract_inverted_index.Sentinel-1C | 219 |
| abstract_inverted_index.approaches. | 207 |
| abstract_inverted_index.backscatter | 52, 65, 110 |
| abstract_inverted_index.competition | 164, 238 |
| abstract_inverted_index.inadequate. | 92 |
| abstract_inverted_index.information | 185 |
| abstract_inverted_index.time-series | 90 |
| abstract_inverted_index.co-polarized | 58 |
| abstract_inverted_index.competition, | 201 |
| abstract_inverted_index.differencing | 91 |
| abstract_inverted_index.thresholding | 88 |
| abstract_inverted_index.Specifically, | 32 |
| abstract_inverted_index.open-sourcing | 157 |
| abstract_inverted_index.infrastructure | 77 |
| abstract_inverted_index.cross-polarized | 60 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |