Leveraging Diffusion Modeling for Remote Sensing Change Detection in Built-Up Urban Areas Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3350641
In the evolving domain of built-up area surveillance, remote sensing technology emerges as an essential instrument for Change Detection (CD). The introduction of deep learning has notably augmented the precision and efficiency of CD. This study focuses on the integration of deep learning methodologies, specifically the diffusion model, into remote sensing CD tasks for built-up urban areas. The goal is to explore the potential of a pre-trained Text-to-Image Stable Diffusion model for CD tasks and propose a new model called the Difference Guided Diffusion Model (DGDM). DGDM incorporates multiple pre-training techniques for image feature extraction and introduces the Difference Attention Module (DAM) and an Image-to-Text (ITT) adapter to improve the correlation between image features and text semantics. Additionally, DGDM utilizes attention generated from pre-trained Denoise UNet to enhance CD predictions. The effectiveness of the proposed method is evaluated through comparative assessments on four datasets, demonstrating its superiority over previous deep learning methods and its ability to produce more precise and detailed CD results. This innovative approach offers a promising direction for future research in urban remote sensing, emphasizing the potential of diffusion models in enhancing urban CD precision and automation. Our implementation code is available at https://github.com/morty20200301/cd-diffusion.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3350641
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/10382534.pdf
- OA Status
- gold
- Cited By
- 8
- References
- 74
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390659096
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390659096Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3350641Digital Object Identifier
- Title
-
Leveraging Diffusion Modeling for Remote Sensing Change Detection in Built-Up Urban AreasWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Ran Wan, Jiaxin Zhang, Yiying Huang, Yunqin Li, Boya Hu, Bowen WangList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3350641Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10382534.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10382534.pdfDirect OA link when available
- Concepts
-
Computer science, Deep learning, Artificial intelligence, Feature extraction, Automation, Adapter (computing), Code (set theory), Data mining, Remote sensing, Machine learning, Mechanical engineering, Set (abstract data type), Geology, Engineering, Operating system, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
74Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390659096 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3350641 |
| ids.doi | https://doi.org/10.1109/access.2024.3350641 |
| ids.openalex | https://openalex.org/W4390659096 |
| fwci | 4.91948001 |
| type | article |
| title | Leveraging Diffusion Modeling for Remote Sensing Change Detection in Built-Up Urban Areas |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 7039 |
| biblio.first_page | 7028 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T10226 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9839000105857849 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Land Use and Ecosystem Services |
| topics[2].id | https://openalex.org/T13890 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9721999764442444 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Remote Sensing and Land Use |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8175973892211914 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C108583219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5326112508773804 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[1].display_name | Deep learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5043033361434937 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C52622490 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49677592515945435 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[3].display_name | Feature extraction |
| concepts[4].id | https://openalex.org/C115901376 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4720410108566284 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q184199 |
| concepts[4].display_name | Automation |
| concepts[5].id | https://openalex.org/C177284502 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45989683270454407 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1005390 |
| concepts[5].display_name | Adapter (computing) |
| concepts[6].id | https://openalex.org/C2776760102 |
| concepts[6].level | 3 |
| concepts[6].score | 0.419479101896286 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[6].display_name | Code (set theory) |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3841296434402466 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C62649853 |
| concepts[8].level | 1 |
| concepts[8].score | 0.38314059376716614 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[8].display_name | Remote sensing |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3668249547481537 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C78519656 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[10].display_name | Mechanical engineering |
| concepts[11].id | https://openalex.org/C177264268 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[11].display_name | Set (abstract data type) |
| concepts[12].id | https://openalex.org/C127313418 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[12].display_name | Geology |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8175973892211914 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/deep-learning |
| keywords[1].score | 0.5326112508773804 |
| keywords[1].display_name | Deep learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5043033361434937 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/feature-extraction |
| keywords[3].score | 0.49677592515945435 |
| keywords[3].display_name | Feature extraction |
| keywords[4].id | https://openalex.org/keywords/automation |
| keywords[4].score | 0.4720410108566284 |
| keywords[4].display_name | Automation |
| keywords[5].id | https://openalex.org/keywords/adapter |
| keywords[5].score | 0.45989683270454407 |
| keywords[5].display_name | Adapter (computing) |
| keywords[6].id | https://openalex.org/keywords/code |
| keywords[6].score | 0.419479101896286 |
| keywords[6].display_name | Code (set theory) |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.3841296434402466 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/remote-sensing |
| keywords[8].score | 0.38314059376716614 |
| keywords[8].display_name | Remote sensing |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.3668249547481537 |
| keywords[9].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3350641 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10382534.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3350641 |
| locations[1].id | pmh:oai:doaj.org/article:69ed1ce2ab7449778232025cd34c5701 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 7028-7039 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/69ed1ce2ab7449778232025cd34c5701 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5039135010 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9267-6600 |
| authorships[0].author.display_name | Ran Wan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I141649914 |
| authorships[0].affiliations[0].raw_affiliation_string | Architecture and design college, Nanchang University, Nanchang, China |
| authorships[0].institutions[0].id | https://openalex.org/I141649914 |
| authorships[0].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanchang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ran Wan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Architecture and design college, Nanchang University, Nanchang, China |
| authorships[1].author.id | https://openalex.org/A5100414871 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6330-6723 |
| authorships[1].author.display_name | Jiaxin Zhang |
| authorships[1].countries | CN, JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141649914 |
| authorships[1].affiliations[0].raw_affiliation_string | Architecture and design college, Nanchang University, Nanchang, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I98285908 |
| authorships[1].affiliations[1].raw_affiliation_string | Graduate School of Engineering, Division of Sustainable Energy and Environmental Engineering, Osaka University, Osaka, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I141649914 |
| authorships[1].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanchang University |
| authorships[1].institutions[1].id | https://openalex.org/I98285908 |
| authorships[1].institutions[1].ror | https://ror.org/035t8zc32 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I98285908 |
| authorships[1].institutions[1].country_code | JP |
| authorships[1].institutions[1].display_name | The University of Osaka |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiaxin Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Architecture and design college, Nanchang University, Nanchang, China, Graduate School of Engineering, Division of Sustainable Energy and Environmental Engineering, Osaka University, Osaka, Japan |
| authorships[2].author.id | https://openalex.org/A5102994875 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-2634-9147 |
| authorships[2].author.display_name | Yiying Huang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I141649914 |
| authorships[2].affiliations[0].raw_affiliation_string | Architecture and design college, Nanchang University, Nanchang, China |
| authorships[2].institutions[0].id | https://openalex.org/I141649914 |
| authorships[2].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanchang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yiying Huang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Architecture and design college, Nanchang University, Nanchang, China |
| authorships[3].author.id | https://openalex.org/A5048679031 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1886-0477 |
| authorships[3].author.display_name | Yunqin Li |
| authorships[3].countries | CN, JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I98285908 |
| authorships[3].affiliations[0].raw_affiliation_string | Graduate School of Engineering, Division of Sustainable Energy and Environmental Engineering, Osaka University, Osaka, Japan |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I141649914 |
| authorships[3].affiliations[1].raw_affiliation_string | Architecture and design college, Nanchang University, Nanchang, China |
| authorships[3].institutions[0].id | https://openalex.org/I141649914 |
| authorships[3].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanchang University |
| authorships[3].institutions[1].id | https://openalex.org/I98285908 |
| authorships[3].institutions[1].ror | https://ror.org/035t8zc32 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I98285908 |
| authorships[3].institutions[1].country_code | JP |
| authorships[3].institutions[1].display_name | The University of Osaka |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yunqin Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Architecture and design college, Nanchang University, Nanchang, China, Graduate School of Engineering, Division of Sustainable Energy and Environmental Engineering, Osaka University, Osaka, Japan |
| authorships[4].author.id | https://openalex.org/A5104225774 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Boya Hu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I116953780, https://openalex.org/I4210136431 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Architecture and Urban Planning, Tongji University, Shanghai, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210136431 |
| authorships[4].institutions[0].ror | https://ror.org/03gb38m78 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210136431 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shanghai Tongji Urban Planning and Design Institute |
| authorships[4].institutions[1].id | https://openalex.org/I116953780 |
| authorships[4].institutions[1].ror | https://ror.org/03rc6as71 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I116953780 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Tongji University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Boya Hu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Architecture and Urban Planning, Tongji University, Shanghai, China |
| authorships[5].author.id | https://openalex.org/A5100412545 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2911-5595 |
| authorships[5].author.display_name | Bowen Wang |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I98285908 |
| authorships[5].affiliations[0].raw_affiliation_string | Science and Technology, Graduate School of Information, Osaka University, 1-1, Yamadaoka, Osaka, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I98285908 |
| authorships[5].institutions[0].ror | https://ror.org/035t8zc32 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I98285908 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | The University of Osaka |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Bowen Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Science and Technology, Graduate School of Information, Osaka University, 1-1, Yamadaoka, Osaka, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10382534.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Leveraging Diffusion Modeling for Remote Sensing Change Detection in Built-Up Urban Areas |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2133028525, https://openalex.org/W4306381730, https://openalex.org/W4229060448, https://openalex.org/W2981692913, https://openalex.org/W3184035966, https://openalex.org/W3044188621, https://openalex.org/W2160602540, https://openalex.org/W2485605994, https://openalex.org/W4385571108, https://openalex.org/W2146090693 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3350641 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10382534.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3350641 |
| primary_location.id | doi:10.1109/access.2024.3350641 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10382534.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3350641 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2036798369, https://openalex.org/W3195032332, https://openalex.org/W3012191125, https://openalex.org/W4229002315, https://openalex.org/W2991591719, https://openalex.org/W2969469559, https://openalex.org/W3087848493, https://openalex.org/W3018711384, https://openalex.org/W4387010664, https://openalex.org/W4322502493, https://openalex.org/W2921442714, https://openalex.org/W4386601624, https://openalex.org/W6753737009, https://openalex.org/W3011156941, https://openalex.org/W2165577558, https://openalex.org/W2543281563, https://openalex.org/W2919115771, https://openalex.org/W2891248708, https://openalex.org/W4312549298, https://openalex.org/W3152083889, https://openalex.org/W2986943971, https://openalex.org/W3180045188, https://openalex.org/W3130754787, https://openalex.org/W6857290134, https://openalex.org/W6779823529, https://openalex.org/W4312933868, https://openalex.org/W4390873429, https://openalex.org/W3195253653, https://openalex.org/W3180355996, https://openalex.org/W4313156423, https://openalex.org/W2779054585, https://openalex.org/W4386133645, https://openalex.org/W1979061792, https://openalex.org/W2006383776, https://openalex.org/W2910587630, https://openalex.org/W1998595580, https://openalex.org/W3047246571, https://openalex.org/W3137731664, https://openalex.org/W3036453075, https://openalex.org/W3009942016, https://openalex.org/W3157062364, https://openalex.org/W3186392065, https://openalex.org/W3108049163, https://openalex.org/W6739901393, https://openalex.org/W3144483443, https://openalex.org/W6640963894, https://openalex.org/W3016889634, https://openalex.org/W2985775862, https://openalex.org/W6841366371, https://openalex.org/W2025768430, https://openalex.org/W2963420272, https://openalex.org/W2326925005, https://openalex.org/W6755207826, https://openalex.org/W4312312750, https://openalex.org/W6779879114, https://openalex.org/W4312804044, https://openalex.org/W1901129140, https://openalex.org/W4387717533, https://openalex.org/W3198377975, https://openalex.org/W4386790226, https://openalex.org/W2908320224, https://openalex.org/W3027225766, https://openalex.org/W2805152403, https://openalex.org/W3120467244, https://openalex.org/W6804811285, https://openalex.org/W6757817989, https://openalex.org/W4286850199, https://openalex.org/W4392435044, https://openalex.org/W3100245404, https://openalex.org/W4289785045, https://openalex.org/W2896457183, https://openalex.org/W2908510526, https://openalex.org/W4289744446, https://openalex.org/W1959608418 |
| referenced_works_count | 74 |
| abstract_inverted_index.a | 65, 76, 167 |
| abstract_inverted_index.CD | 51, 72, 128, 161, 186 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 13, 103 |
| abstract_inverted_index.as | 12 |
| abstract_inverted_index.at | 195 |
| abstract_inverted_index.in | 173, 183 |
| abstract_inverted_index.is | 59, 136, 193 |
| abstract_inverted_index.of | 4, 22, 32, 40, 64, 132, 180 |
| abstract_inverted_index.on | 37, 141 |
| abstract_inverted_index.to | 60, 107, 126, 155 |
| abstract_inverted_index.CD. | 33 |
| abstract_inverted_index.Our | 190 |
| abstract_inverted_index.The | 20, 57, 130 |
| abstract_inverted_index.and | 30, 74, 95, 102, 114, 152, 159, 188 |
| abstract_inverted_index.for | 16, 53, 71, 91, 170 |
| abstract_inverted_index.has | 25 |
| abstract_inverted_index.its | 145, 153 |
| abstract_inverted_index.new | 77 |
| abstract_inverted_index.the | 1, 28, 38, 45, 62, 80, 97, 109, 133, 178 |
| abstract_inverted_index.DGDM | 86, 118 |
| abstract_inverted_index.This | 34, 163 |
| abstract_inverted_index.UNet | 125 |
| abstract_inverted_index.area | 6 |
| abstract_inverted_index.code | 192 |
| abstract_inverted_index.deep | 23, 41, 149 |
| abstract_inverted_index.four | 142 |
| abstract_inverted_index.from | 122 |
| abstract_inverted_index.goal | 58 |
| abstract_inverted_index.into | 48 |
| abstract_inverted_index.more | 157 |
| abstract_inverted_index.over | 147 |
| abstract_inverted_index.text | 115 |
| abstract_inverted_index.(CD). | 19 |
| abstract_inverted_index.(DAM) | 101 |
| abstract_inverted_index.(ITT) | 105 |
| abstract_inverted_index.Model | 84 |
| abstract_inverted_index.image | 92, 112 |
| abstract_inverted_index.model | 70, 78 |
| abstract_inverted_index.study | 35 |
| abstract_inverted_index.tasks | 52, 73 |
| abstract_inverted_index.urban | 55, 174, 185 |
| abstract_inverted_index.Change | 17 |
| abstract_inverted_index.Guided | 82 |
| abstract_inverted_index.Module | 100 |
| abstract_inverted_index.Stable | 68 |
| abstract_inverted_index.areas. | 56 |
| abstract_inverted_index.called | 79 |
| abstract_inverted_index.domain | 3 |
| abstract_inverted_index.future | 171 |
| abstract_inverted_index.method | 135 |
| abstract_inverted_index.model, | 47 |
| abstract_inverted_index.models | 182 |
| abstract_inverted_index.offers | 166 |
| abstract_inverted_index.remote | 8, 49, 175 |
| abstract_inverted_index.(DGDM). | 85 |
| abstract_inverted_index.Denoise | 124 |
| abstract_inverted_index.ability | 154 |
| abstract_inverted_index.adapter | 106 |
| abstract_inverted_index.between | 111 |
| abstract_inverted_index.emerges | 11 |
| abstract_inverted_index.enhance | 127 |
| abstract_inverted_index.explore | 61 |
| abstract_inverted_index.feature | 93 |
| abstract_inverted_index.focuses | 36 |
| abstract_inverted_index.improve | 108 |
| abstract_inverted_index.methods | 151 |
| abstract_inverted_index.notably | 26 |
| abstract_inverted_index.precise | 158 |
| abstract_inverted_index.produce | 156 |
| abstract_inverted_index.propose | 75 |
| abstract_inverted_index.sensing | 9, 50 |
| abstract_inverted_index.through | 138 |
| abstract_inverted_index.approach | 165 |
| abstract_inverted_index.built-up | 5, 54 |
| abstract_inverted_index.detailed | 160 |
| abstract_inverted_index.evolving | 2 |
| abstract_inverted_index.features | 113 |
| abstract_inverted_index.learning | 24, 42, 150 |
| abstract_inverted_index.multiple | 88 |
| abstract_inverted_index.previous | 148 |
| abstract_inverted_index.proposed | 134 |
| abstract_inverted_index.research | 172 |
| abstract_inverted_index.results. | 162 |
| abstract_inverted_index.sensing, | 176 |
| abstract_inverted_index.utilizes | 119 |
| abstract_inverted_index.Attention | 99 |
| abstract_inverted_index.Detection | 18 |
| abstract_inverted_index.Diffusion | 69, 83 |
| abstract_inverted_index.attention | 120 |
| abstract_inverted_index.augmented | 27 |
| abstract_inverted_index.available | 194 |
| abstract_inverted_index.datasets, | 143 |
| abstract_inverted_index.diffusion | 46, 181 |
| abstract_inverted_index.direction | 169 |
| abstract_inverted_index.enhancing | 184 |
| abstract_inverted_index.essential | 14 |
| abstract_inverted_index.evaluated | 137 |
| abstract_inverted_index.generated | 121 |
| abstract_inverted_index.potential | 63, 179 |
| abstract_inverted_index.precision | 29, 187 |
| abstract_inverted_index.promising | 168 |
| abstract_inverted_index.Difference | 81, 98 |
| abstract_inverted_index.efficiency | 31 |
| abstract_inverted_index.extraction | 94 |
| abstract_inverted_index.innovative | 164 |
| abstract_inverted_index.instrument | 15 |
| abstract_inverted_index.introduces | 96 |
| abstract_inverted_index.semantics. | 116 |
| abstract_inverted_index.techniques | 90 |
| abstract_inverted_index.technology | 10 |
| abstract_inverted_index.assessments | 140 |
| abstract_inverted_index.automation. | 189 |
| abstract_inverted_index.comparative | 139 |
| abstract_inverted_index.correlation | 110 |
| abstract_inverted_index.emphasizing | 177 |
| abstract_inverted_index.integration | 39 |
| abstract_inverted_index.pre-trained | 66, 123 |
| abstract_inverted_index.superiority | 146 |
| abstract_inverted_index.incorporates | 87 |
| abstract_inverted_index.introduction | 21 |
| abstract_inverted_index.pre-training | 89 |
| abstract_inverted_index.predictions. | 129 |
| abstract_inverted_index.specifically | 44 |
| abstract_inverted_index.Additionally, | 117 |
| abstract_inverted_index.Image-to-Text | 104 |
| abstract_inverted_index.Text-to-Image | 67 |
| abstract_inverted_index.demonstrating | 144 |
| abstract_inverted_index.effectiveness | 131 |
| abstract_inverted_index.surveillance, | 7 |
| abstract_inverted_index.implementation | 191 |
| abstract_inverted_index.methodologies, | 43 |
| abstract_inverted_index.<uri>https://github.com/morty20200301/cd-diffusion</uri>. | 196 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.92672159 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |