Leveraging Mobile Phone Sensors, Machine Learning, and Explainable Artificial Intelligence to Predict Imminent Same-Day Binge-drinking Events to Support Just-in-time Adaptive Interventions: Algorithm Development and Validation Study (Preprint) Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.2196/preprints.39862
BACKGROUND Digital just-in-time adaptive interventions can reduce binge-drinking events (BDEs; consuming ≥4 drinks for women and ≥5 drinks for men per occasion) in young adults but need to be optimized for timing and content. Delivering just-in-time support messages in the hours prior to BDEs could improve intervention impact. OBJECTIVE We aimed to determine the feasibility of developing a machine learning (ML) model to accurately predict future, that is, same-day BDEs 1 to 6 hours prior BDEs, using smartphone sensor data and to identify the most informative phone sensor features associated with BDEs on weekends and weekdays to determine the key features that explain prediction model performance. METHODS We collected phone sensor data from 75 young adults (aged 21 to 25 years; mean 22.4, SD 1.9 years) with risky drinking behavior who reported their drinking behavior over 14 weeks. The participants in this secondary analysis were enrolled in a clinical trial. We developed ML models testing different algorithms (eg, extreme gradient boosting [XGBoost] and decision tree) to predict same-day BDEs (vs low-risk drinking events and non-drinking periods) using smartphone sensor data (eg, accelerometer and GPS). We tested various “prediction distance” time windows (more proximal: 1 hour; distant: 6 hours) from drinking onset. We also tested various analysis time windows (ie, the amount of data to be analyzed), ranging from 1 to 12 hours prior to drinking onset, because this determines the amount of data that needs to be stored on the phone to compute the model. Explainable artificial intelligence was used to explore interactions among the most informative phone sensor features contributing to the prediction of BDEs. RESULTS The XGBoost model performed the best in predicting imminent same-day BDEs, with 95% accuracy on weekends and 94.3% accuracy on weekdays (F1-score=0.95 and 0.94, respectively). This XGBoost model needed 12 and 9 hours of phone sensor data at 3- and 6-hour prediction distance from the onset of drinking on weekends and weekdays, respectively, prior to predicting same-day BDEs. The most informative phone sensor features for BDE prediction were time (eg, time of day) and GPS-derived features, such as the radius of gyration (an indicator of travel). Interactions among key features (eg, time of day and GPS-derived features) contributed to the prediction of same-day BDEs. CONCLUSIONS We demonstrated the feasibility and potential use of smartphone sensor data and ML for accurately predicting imminent (same-day) BDEs in young adults. The prediction model provides “windows of opportunity,” and with the adoption of explainable artificial intelligence, we identified “key contributing features” to trigger just-in-time adaptive intervention prior to the onset of BDEs, which has the potential to reduce the likelihood of BDEs in young adults. CLINICALTRIAL ClinicalTrials.gov NCT02918565; https://clinicaltrials.gov/ct2/show/NCT02918565
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2196/preprints.39862
- OA Status
- gold
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4307000033
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4307000033Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2196/preprints.39862Digital Object Identifier
- Title
-
Leveraging Mobile Phone Sensors, Machine Learning, and Explainable Artificial Intelligence to Predict Imminent Same-Day Binge-drinking Events to Support Just-in-time Adaptive Interventions: Algorithm Development and Validation Study (Preprint)Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-20Full publication date if available
- Authors
-
Sang Won Bae, Brian Suffoletto, Tongze Zhang, Tammy Chung, Melik Ozolcer, Rahul Islam, Anind K. DeyList of authors in order
- Landing page
-
https://doi.org/10.2196/preprints.39862Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2196/preprints.39862Direct OA link when available
- Concepts
-
Psychological intervention, Binge drinking, Machine learning, mHealth, Decision tree, Phone, Artificial intelligence, Medicine, Computer science, Poison control, Environmental health, Injury prevention, Psychiatry, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4307000033 |
|---|---|
| doi | https://doi.org/10.2196/preprints.39862 |
| ids.doi | https://doi.org/10.2196/preprints.39862 |
| ids.openalex | https://openalex.org/W4307000033 |
| fwci | 0.0 |
| type | preprint |
| title | Leveraging Mobile Phone Sensors, Machine Learning, and Explainable Artificial Intelligence to Predict Imminent Same-Day Binge-drinking Events to Support Just-in-time Adaptive Interventions: Algorithm Development and Validation Study (Preprint) |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11519 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.996399998664856 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3202 |
| topics[0].subfield.display_name | Applied Psychology |
| topics[0].display_name | Digital Mental Health Interventions |
| topics[1].id | https://openalex.org/T11446 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.992900013923645 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3600 |
| topics[1].subfield.display_name | General Health Professions |
| topics[1].display_name | Mobile Health and mHealth Applications |
| topics[2].id | https://openalex.org/T10043 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9861000180244446 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Substance Abuse Treatment and Outcomes |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C27415008 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7301487326622009 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7256382 |
| concepts[0].display_name | Psychological intervention |
| concepts[1].id | https://openalex.org/C2776679223 |
| concepts[1].level | 4 |
| concepts[1].score | 0.7089711427688599 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1521260 |
| concepts[1].display_name | Binge drinking |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5906710624694824 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C2779363104 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5106127858161926 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17069079 |
| concepts[3].display_name | mHealth |
| concepts[4].id | https://openalex.org/C84525736 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5070607662200928 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[4].display_name | Decision tree |
| concepts[5].id | https://openalex.org/C2778707766 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47846150398254395 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q202064 |
| concepts[5].display_name | Phone |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4739812910556793 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.439527690410614 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.41507571935653687 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C3017944768 |
| concepts[9].level | 2 |
| concepts[9].score | 0.21333476901054382 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1450463 |
| concepts[9].display_name | Poison control |
| concepts[10].id | https://openalex.org/C99454951 |
| concepts[10].level | 1 |
| concepts[10].score | 0.21201926469802856 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[10].display_name | Environmental health |
| concepts[11].id | https://openalex.org/C190385971 |
| concepts[11].level | 3 |
| concepts[11].score | 0.21196189522743225 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q373494 |
| concepts[11].display_name | Injury prevention |
| concepts[12].id | https://openalex.org/C118552586 |
| concepts[12].level | 1 |
| concepts[12].score | 0.10660713911056519 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[12].display_name | Psychiatry |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/psychological-intervention |
| keywords[0].score | 0.7301487326622009 |
| keywords[0].display_name | Psychological intervention |
| keywords[1].id | https://openalex.org/keywords/binge-drinking |
| keywords[1].score | 0.7089711427688599 |
| keywords[1].display_name | Binge drinking |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.5906710624694824 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/mhealth |
| keywords[3].score | 0.5106127858161926 |
| keywords[3].display_name | mHealth |
| keywords[4].id | https://openalex.org/keywords/decision-tree |
| keywords[4].score | 0.5070607662200928 |
| keywords[4].display_name | Decision tree |
| keywords[5].id | https://openalex.org/keywords/phone |
| keywords[5].score | 0.47846150398254395 |
| keywords[5].display_name | Phone |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4739812910556793 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.439527690410614 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.41507571935653687 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/poison-control |
| keywords[9].score | 0.21333476901054382 |
| keywords[9].display_name | Poison control |
| keywords[10].id | https://openalex.org/keywords/environmental-health |
| keywords[10].score | 0.21201926469802856 |
| keywords[10].display_name | Environmental health |
| keywords[11].id | https://openalex.org/keywords/injury-prevention |
| keywords[11].score | 0.21196189522743225 |
| keywords[11].display_name | Injury prevention |
| keywords[12].id | https://openalex.org/keywords/psychiatry |
| keywords[12].score | 0.10660713911056519 |
| keywords[12].display_name | Psychiatry |
| language | en |
| locations[0].id | doi:10.2196/preprints.39862 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2196/preprints.39862 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5077465792 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2047-1358 |
| authorships[0].author.display_name | Sang Won Bae |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I108468826 |
| authorships[0].affiliations[0].raw_affiliation_string | Human-Computer Interaction and Human-Centered AI Systems Lab, AI for Healthcare Lab, School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, United States |
| authorships[0].institutions[0].id | https://openalex.org/I108468826 |
| authorships[0].institutions[0].ror | https://ror.org/02z43xh36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I108468826 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Stevens Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sang Won Bae |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Human-Computer Interaction and Human-Centered AI Systems Lab, AI for Healthcare Lab, School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, United States |
| authorships[1].author.id | https://openalex.org/A5008411397 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9628-5260 |
| authorships[1].author.display_name | Brian Suffoletto |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Emergency Medicine, Stanford University, Stanford, CA, United States |
| authorships[1].institutions[0].id | https://openalex.org/I97018004 |
| authorships[1].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Stanford University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Brian Suffoletto |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Emergency Medicine, Stanford University, Stanford, CA, United States |
| authorships[2].author.id | https://openalex.org/A5057208002 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3375-7136 |
| authorships[2].author.display_name | Tongze Zhang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I108468826 |
| authorships[2].affiliations[0].raw_affiliation_string | Human-Computer Interaction and Human-Centered AI Systems Lab, AI for Healthcare Lab, School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, United States |
| authorships[2].institutions[0].id | https://openalex.org/I108468826 |
| authorships[2].institutions[0].ror | https://ror.org/02z43xh36 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I108468826 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Stevens Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tongze Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Human-Computer Interaction and Human-Centered AI Systems Lab, AI for Healthcare Lab, School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, United States |
| authorships[3].author.id | https://openalex.org/A5076916493 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1527-2792 |
| authorships[3].author.display_name | Tammy Chung |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I102322142 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute for Health, Healthcare Policy and Aging Research, Rutgers University, Newark, NJ, United States |
| authorships[3].institutions[0].id | https://openalex.org/I102322142 |
| authorships[3].institutions[0].ror | https://ror.org/05vt9qd57 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I102322142 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Rutgers, The State University of New Jersey |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tammy Chung |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute for Health, Healthcare Policy and Aging Research, Rutgers University, Newark, NJ, United States |
| authorships[4].author.id | https://openalex.org/A5048840881 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4251-0204 |
| authorships[4].author.display_name | Melik Ozolcer |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I108468826 |
| authorships[4].affiliations[0].raw_affiliation_string | Human-Computer Interaction and Human-Centered AI Systems Lab, AI for Healthcare Lab, School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, United States |
| authorships[4].institutions[0].id | https://openalex.org/I108468826 |
| authorships[4].institutions[0].ror | https://ror.org/02z43xh36 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I108468826 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Stevens Institute of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Melik Ozolcer |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Human-Computer Interaction and Human-Centered AI Systems Lab, AI for Healthcare Lab, School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, United States |
| authorships[5].author.id | https://openalex.org/A5036656109 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3601-0078 |
| authorships[5].author.display_name | Rahul Islam |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I108468826 |
| authorships[5].affiliations[0].raw_affiliation_string | Human-Computer Interaction and Human-Centered AI Systems Lab, AI for Healthcare Lab, School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, United States |
| authorships[5].institutions[0].id | https://openalex.org/I108468826 |
| authorships[5].institutions[0].ror | https://ror.org/02z43xh36 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I108468826 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Stevens Institute of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mohammad Rahul Islam |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Human-Computer Interaction and Human-Centered AI Systems Lab, AI for Healthcare Lab, School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, United States |
| authorships[6].author.id | https://openalex.org/A5032134965 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3004-0770 |
| authorships[6].author.display_name | Anind K. Dey |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[6].affiliations[0].raw_affiliation_string | Information School, University of Washington, Seattle, WA, United States |
| authorships[6].institutions[0].id | https://openalex.org/I201448701 |
| authorships[6].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Washington |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Anind K Dey |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Information School, University of Washington, Seattle, WA, United States |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2196/preprints.39862 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Leveraging Mobile Phone Sensors, Machine Learning, and Explainable Artificial Intelligence to Predict Imminent Same-Day Binge-drinking Events to Support Just-in-time Adaptive Interventions: Algorithm Development and Validation Study (Preprint) |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11519 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.996399998664856 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3202 |
| primary_topic.subfield.display_name | Applied Psychology |
| primary_topic.display_name | Digital Mental Health Interventions |
| related_works | https://openalex.org/W3176210869, https://openalex.org/W3157260717, https://openalex.org/W1989929201, https://openalex.org/W2963498005, https://openalex.org/W2328171598, https://openalex.org/W4210372979, https://openalex.org/W4254922057, https://openalex.org/W3217504343, https://openalex.org/W4364360147, https://openalex.org/W4251124243 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2196/preprints.39862 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2196/preprints.39862 |
| primary_location.id | doi:10.2196/preprints.39862 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2196/preprints.39862 |
| publication_date | 2022-10-20 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2168731111, https://openalex.org/W2294969262, https://openalex.org/W2073821370, https://openalex.org/W2768990309, https://openalex.org/W2726276264, https://openalex.org/W2295778789, https://openalex.org/W2066806488, https://openalex.org/W2133494649, https://openalex.org/W2148143831, https://openalex.org/W1993925969, https://openalex.org/W2056068852, https://openalex.org/W1562334792, https://openalex.org/W2804328666, https://openalex.org/W1992141573, https://openalex.org/W2078074240, https://openalex.org/W2469266040, https://openalex.org/W2200844382, https://openalex.org/W2788757686, https://openalex.org/W2963385790, https://openalex.org/W2906349441, https://openalex.org/W2053042108, https://openalex.org/W2808199786, https://openalex.org/W2056885389, https://openalex.org/W2957084319, https://openalex.org/W2796150676, https://openalex.org/W1884161560, https://openalex.org/W2097385426, https://openalex.org/W2427775456, https://openalex.org/W2523153599, https://openalex.org/W2954419256, https://openalex.org/W2008150142, https://openalex.org/W1894490285, https://openalex.org/W2088366166, https://openalex.org/W2783941054, https://openalex.org/W2791241701, https://openalex.org/W1529449827, https://openalex.org/W2056499831, https://openalex.org/W2155002669, https://openalex.org/W1854498722, https://openalex.org/W2093672376, https://openalex.org/W827204458, https://openalex.org/W2561869757, https://openalex.org/W2899235150, https://openalex.org/W2767369084, https://openalex.org/W2908690061, https://openalex.org/W2473998792, https://openalex.org/W2516086211, https://openalex.org/W3111758161, https://openalex.org/W2736804788, https://openalex.org/W4290612351, https://openalex.org/W2169011692 |
| referenced_works_count | 51 |
| abstract_inverted_index.1 | 73, 198, 223 |
| abstract_inverted_index.6 | 75, 201 |
| abstract_inverted_index.9 | 305 |
| abstract_inverted_index.a | 60, 152 |
| abstract_inverted_index.12 | 225, 303 |
| abstract_inverted_index.14 | 141 |
| abstract_inverted_index.21 | 122 |
| abstract_inverted_index.25 | 124 |
| abstract_inverted_index.3- | 312 |
| abstract_inverted_index.75 | 118 |
| abstract_inverted_index.ML | 157, 393 |
| abstract_inverted_index.SD | 128 |
| abstract_inverted_index.We | 52, 112, 155, 189, 206, 381 |
| abstract_inverted_index.as | 351 |
| abstract_inverted_index.at | 311 |
| abstract_inverted_index.be | 29, 219, 241 |
| abstract_inverted_index.in | 23, 39, 145, 151, 280, 400, 444 |
| abstract_inverted_index.of | 58, 216, 236, 269, 307, 320, 345, 354, 358, 366, 375, 388, 408, 414, 432, 442 |
| abstract_inverted_index.on | 95, 243, 288, 293, 322 |
| abstract_inverted_index.to | 28, 43, 54, 65, 74, 84, 99, 123, 170, 218, 224, 228, 240, 246, 255, 266, 328, 372, 423, 429, 438 |
| abstract_inverted_index.we | 418 |
| abstract_inverted_index.(an | 356 |
| abstract_inverted_index.(vs | 174 |
| abstract_inverted_index.1.9 | 129 |
| abstract_inverted_index.95% | 286 |
| abstract_inverted_index.BDE | 339 |
| abstract_inverted_index.The | 143, 274, 332, 403 |
| abstract_inverted_index.and | 16, 33, 83, 97, 167, 178, 187, 290, 296, 304, 313, 324, 347, 368, 385, 392, 410 |
| abstract_inverted_index.but | 26 |
| abstract_inverted_index.can | 6 |
| abstract_inverted_index.day | 367 |
| abstract_inverted_index.for | 14, 19, 31, 338, 394 |
| abstract_inverted_index.has | 435 |
| abstract_inverted_index.is, | 70 |
| abstract_inverted_index.key | 102, 362 |
| abstract_inverted_index.men | 20 |
| abstract_inverted_index.per | 21 |
| abstract_inverted_index.the | 40, 56, 86, 101, 214, 234, 244, 248, 259, 267, 278, 318, 352, 373, 383, 412, 430, 436, 440 |
| abstract_inverted_index.use | 387 |
| abstract_inverted_index.was | 253 |
| abstract_inverted_index.who | 135 |
| abstract_inverted_index.(ML) | 63 |
| abstract_inverted_index.(eg, | 162, 185, 343, 364 |
| abstract_inverted_index.(ie, | 213 |
| abstract_inverted_index.BDEs | 44, 72, 94, 173, 399, 443 |
| abstract_inverted_index.This | 299 |
| abstract_inverted_index.also | 207 |
| abstract_inverted_index.best | 279 |
| abstract_inverted_index.data | 82, 116, 184, 217, 237, 310, 391 |
| abstract_inverted_index.day) | 346 |
| abstract_inverted_index.from | 117, 203, 222, 317 |
| abstract_inverted_index.mean | 126 |
| abstract_inverted_index.most | 87, 260, 333 |
| abstract_inverted_index.need | 27 |
| abstract_inverted_index.over | 140 |
| abstract_inverted_index.such | 350 |
| abstract_inverted_index.that | 69, 104, 238 |
| abstract_inverted_index.this | 146, 232 |
| abstract_inverted_index.time | 194, 211, 342, 344, 365 |
| abstract_inverted_index.used | 254 |
| abstract_inverted_index.were | 149, 341 |
| abstract_inverted_index.with | 93, 131, 285, 411 |
| abstract_inverted_index.≥4 | 12 |
| abstract_inverted_index.≥5 | 17 |
| abstract_inverted_index.(aged | 121 |
| abstract_inverted_index.(more | 196 |
| abstract_inverted_index.0.94, | 297 |
| abstract_inverted_index.22.4, | 127 |
| abstract_inverted_index.94.3% | 291 |
| abstract_inverted_index.<sec> | 0, 50, 110, 272, 379, 448 |
| abstract_inverted_index.BDEs, | 284, 433 |
| abstract_inverted_index.BDEs. | 270, 331, 377 |
| abstract_inverted_index.GPS). | 188 |
| abstract_inverted_index.aimed | 53 |
| abstract_inverted_index.among | 258, 361 |
| abstract_inverted_index.could | 45 |
| abstract_inverted_index.hour; | 199 |
| abstract_inverted_index.hours | 41, 76, 226, 306 |
| abstract_inverted_index.model | 64, 107, 276, 301, 405 |
| abstract_inverted_index.needs | 239 |
| abstract_inverted_index.onset | 319, 431 |
| abstract_inverted_index.phone | 89, 114, 245, 262, 308, 335 |
| abstract_inverted_index.prior | 42, 77, 227, 327, 428 |
| abstract_inverted_index.risky | 132 |
| abstract_inverted_index.their | 137 |
| abstract_inverted_index.tree) | 169 |
| abstract_inverted_index.using | 79, 181 |
| abstract_inverted_index.which | 434 |
| abstract_inverted_index.women | 15 |
| abstract_inverted_index.young | 24, 119, 401, 445 |
| abstract_inverted_index.(BDEs; | 10 |
| abstract_inverted_index.6-hour | 314 |
| abstract_inverted_index.</sec> | 49, 109, 271, 378, 447, 453 |
| abstract_inverted_index.adults | 25, 120 |
| abstract_inverted_index.amount | 215, 235 |
| abstract_inverted_index.drinks | 13, 18 |
| abstract_inverted_index.events | 9, 177 |
| abstract_inverted_index.hours) | 202 |
| abstract_inverted_index.model. | 249 |
| abstract_inverted_index.models | 158 |
| abstract_inverted_index.needed | 302 |
| abstract_inverted_index.onset, | 230 |
| abstract_inverted_index.onset. | 205 |
| abstract_inverted_index.radius | 353 |
| abstract_inverted_index.reduce | 7, 439 |
| abstract_inverted_index.sensor | 81, 90, 115, 183, 263, 309, 336, 390 |
| abstract_inverted_index.stored | 242 |
| abstract_inverted_index.tested | 190, 208 |
| abstract_inverted_index.timing | 32 |
| abstract_inverted_index.trial. | 154 |
| abstract_inverted_index.weeks. | 142 |
| abstract_inverted_index.years) | 130 |
| abstract_inverted_index.years; | 125 |
| abstract_inverted_index.“key | 420 |
| abstract_inverted_index.Digital | 2 |
| abstract_inverted_index.XGBoost | 275, 300 |
| abstract_inverted_index.adults. | 402, 446 |
| abstract_inverted_index.because | 231 |
| abstract_inverted_index.compute | 247 |
| abstract_inverted_index.explain | 105 |
| abstract_inverted_index.explore | 256 |
| abstract_inverted_index.extreme | 163 |
| abstract_inverted_index.impact. | 48 |
| abstract_inverted_index.improve | 46 |
| abstract_inverted_index.machine | 61 |
| abstract_inverted_index.predict | 67, 171 |
| abstract_inverted_index.ranging | 221 |
| abstract_inverted_index.support | 37 |
| abstract_inverted_index.testing | 159 |
| abstract_inverted_index.trigger | 424 |
| abstract_inverted_index.various | 191, 209 |
| abstract_inverted_index.windows | 195, 212 |
| abstract_inverted_index.accuracy | 287, 292 |
| abstract_inverted_index.adaptive | 4, 426 |
| abstract_inverted_index.adoption | 413 |
| abstract_inverted_index.analysis | 148, 210 |
| abstract_inverted_index.behavior | 134, 139 |
| abstract_inverted_index.boosting | 165 |
| abstract_inverted_index.clinical | 153 |
| abstract_inverted_index.content. | 34 |
| abstract_inverted_index.decision | 168 |
| abstract_inverted_index.distance | 316 |
| abstract_inverted_index.distant: | 200 |
| abstract_inverted_index.drinking | 133, 138, 176, 204, 229, 321 |
| abstract_inverted_index.enrolled | 150 |
| abstract_inverted_index.features | 91, 103, 264, 337, 363 |
| abstract_inverted_index.gradient | 164 |
| abstract_inverted_index.gyration | 355 |
| abstract_inverted_index.identify | 85 |
| abstract_inverted_index.imminent | 282, 397 |
| abstract_inverted_index.learning | 62 |
| abstract_inverted_index.low-risk | 175 |
| abstract_inverted_index.messages | 38 |
| abstract_inverted_index.periods) | 180 |
| abstract_inverted_index.provides | 406 |
| abstract_inverted_index.reported | 136 |
| abstract_inverted_index.same-day | 172, 283, 330, 376 |
| abstract_inverted_index.travel). | 359 |
| abstract_inverted_index.weekdays | 98, 294 |
| abstract_inverted_index.weekends | 96, 289, 323 |
| abstract_inverted_index.[XGBoost] | 166 |
| abstract_inverted_index.collected | 113 |
| abstract_inverted_index.consuming | 11 |
| abstract_inverted_index.determine | 55, 100 |
| abstract_inverted_index.developed | 156 |
| abstract_inverted_index.different | 160 |
| abstract_inverted_index.features) | 370 |
| abstract_inverted_index.features, | 349 |
| abstract_inverted_index.indicator | 357 |
| abstract_inverted_index.occasion) | 22 |
| abstract_inverted_index.optimized | 30 |
| abstract_inverted_index.performed | 277 |
| abstract_inverted_index.potential | 386, 437 |
| abstract_inverted_index.proximal: | 197 |
| abstract_inverted_index.secondary | 147 |
| abstract_inverted_index.weekdays, | 325 |
| abstract_inverted_index.(same-day) | 398 |
| abstract_inverted_index.Delivering | 35 |
| abstract_inverted_index.accurately | 66, 395 |
| abstract_inverted_index.algorithms | 161 |
| abstract_inverted_index.analyzed), | 220 |
| abstract_inverted_index.artificial | 251, 416 |
| abstract_inverted_index.associated | 92 |
| abstract_inverted_index.determines | 233 |
| abstract_inverted_index.developing | 59 |
| abstract_inverted_index.identified | 419 |
| abstract_inverted_index.likelihood | 441 |
| abstract_inverted_index.predicting | 281, 329, 396 |
| abstract_inverted_index.prediction | 106, 268, 315, 340, 374, 404 |
| abstract_inverted_index.smartphone | 80, 182, 389 |
| abstract_inverted_index.“windows | 407 |
| abstract_inverted_index.Explainable | 250 |
| abstract_inverted_index.GPS-derived | 348, 369 |
| abstract_inverted_index.contributed | 371 |
| abstract_inverted_index.distance” | 193 |
| abstract_inverted_index.explainable | 415 |
| abstract_inverted_index.feasibility | 57, 384 |
| abstract_inverted_index.features” | 422 |
| abstract_inverted_index.informative | 88, 261, 334 |
| abstract_inverted_index.Interactions | 360 |
| abstract_inverted_index.NCT02918565; | 451 |
| abstract_inverted_index.contributing | 265, 421 |
| abstract_inverted_index.demonstrated | 382 |
| abstract_inverted_index.intelligence | 252 |
| abstract_inverted_index.interactions | 257 |
| abstract_inverted_index.intervention | 47, 427 |
| abstract_inverted_index.just-in-time | 3, 36, 425 |
| abstract_inverted_index.non-drinking | 179 |
| abstract_inverted_index.participants | 144 |
| abstract_inverted_index.performance. | 108 |
| abstract_inverted_index.accelerometer | 186 |
| abstract_inverted_index.intelligence, | 417 |
| abstract_inverted_index.interventions | 5 |
| abstract_inverted_index.respectively, | 326 |
| abstract_inverted_index.“prediction | 192 |
| abstract_inverted_index.binge-drinking | 8 |
| abstract_inverted_index.respectively). | 298 |
| abstract_inverted_index.BDEs</i>, | 78 |
| abstract_inverted_index.opportunity,” | 409 |
| abstract_inverted_index.<i>same-day | 71 |
| abstract_inverted_index.ClinicalTrials.gov | 450 |
| abstract_inverted_index.<title>METHODS</title> | 111 |
| abstract_inverted_index.<title>RESULTS</title> | 273 |
| abstract_inverted_index.<title>OBJECTIVE</title> | 51 |
| abstract_inverted_index.<title>BACKGROUND</title> | 1 |
| abstract_inverted_index.<i>future</i>, | 68 |
| abstract_inverted_index.<title>CONCLUSIONS</title> | 380 |
| abstract_inverted_index.<title>CLINICALTRIAL</title> | 449 |
| abstract_inverted_index.https://clinicaltrials.gov/ct2/show/NCT02918565 | 452 |
| abstract_inverted_index.(<i>F</i><sub>1</sub>-score=0.95 | 295 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.15264095 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |