Leveraging Model Guidance to Extract Training Data from Personalized Diffusion Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.03039
Diffusion Models (DMs) have become powerful image generation tools, especially for few-shot fine-tuning where a pretrained DM is fine-tuned on a small image set to capture specific styles or objects. Many people upload these personalized checkpoints online, fostering communities such as Civitai and HuggingFace. However, model owners may overlook the data leakage risks when releasing fine-tuned checkpoints. Moreover, concerns regarding copyright violations arise when unauthorized data is used during fine-tuning. In this paper, we ask: "Can training data be extracted from these fine-tuned DMs shared online?" A successful extraction would present not only data leakage threats but also offer tangible evidence of copyright infringement. To answer this, we propose FineXtract, a framework for extracting fine-tuning data. Our method approximates fine-tuning as a gradual shift in the model's learned distribution -- from the original pretrained DM toward the fine-tuning data. By extrapolating the models before and after fine-tuning, we guide the generation toward high-probability regions within the fine-tuned data distribution. We then apply a clustering algorithm to extract the most probable images from those generated using this extrapolated guidance. Experiments on DMs fine-tuned with datasets including WikiArt, DreamBooth, and real-world checkpoints posted online validate the effectiveness of our method, extracting about 20% of fine-tuning data in most cases. The code is available https://github.com/Nicholas0228/FineXtract.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.03039
- https://arxiv.org/pdf/2410.03039
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403885535
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403885535Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.03039Digital Object Identifier
- Title
-
Leveraging Model Guidance to Extract Training Data from Personalized Diffusion ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-03Full publication date if available
- Authors
-
Xiaoyu Wu, Jiaru Zhang, Steven Y. WuList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.03039Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.03039Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.03039Direct OA link when available
- Concepts
-
EXPOSE, Training (meteorology), Computer science, Diffusion, Training set, Data science, Artificial intelligence, Geography, Meteorology, Thermodynamics, Astronomy, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403885535 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.03039 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.03039 |
| ids.openalex | https://openalex.org/W4403885535 |
| fwci | |
| type | preprint |
| title | Leveraging Model Guidance to Extract Training Data from Personalized Diffusion Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.25380000472068787 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779137570 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9389223456382751 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q16243196 |
| concepts[0].display_name | EXPOSE |
| concepts[1].id | https://openalex.org/C2777211547 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6979562044143677 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[1].display_name | Training (meteorology) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5698603391647339 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C69357855 |
| concepts[3].level | 2 |
| concepts[3].score | 0.488979697227478 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[3].display_name | Diffusion |
| concepts[4].id | https://openalex.org/C51632099 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44981130957603455 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[4].display_name | Training set |
| concepts[5].id | https://openalex.org/C2522767166 |
| concepts[5].level | 1 |
| concepts[5].score | 0.34677889943122864 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[5].display_name | Data science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.34164300560951233 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.10610049962997437 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C153294291 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[8].display_name | Meteorology |
| concepts[9].id | https://openalex.org/C97355855 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[9].display_name | Thermodynamics |
| concepts[10].id | https://openalex.org/C1276947 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[10].display_name | Astronomy |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/expose |
| keywords[0].score | 0.9389223456382751 |
| keywords[0].display_name | EXPOSE |
| keywords[1].id | https://openalex.org/keywords/training |
| keywords[1].score | 0.6979562044143677 |
| keywords[1].display_name | Training (meteorology) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5698603391647339 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/diffusion |
| keywords[3].score | 0.488979697227478 |
| keywords[3].display_name | Diffusion |
| keywords[4].id | https://openalex.org/keywords/training-set |
| keywords[4].score | 0.44981130957603455 |
| keywords[4].display_name | Training set |
| keywords[5].id | https://openalex.org/keywords/data-science |
| keywords[5].score | 0.34677889943122864 |
| keywords[5].display_name | Data science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.34164300560951233 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.10610049962997437 |
| keywords[7].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.03039 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.03039 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.03039 |
| locations[1].id | doi:10.48550/arxiv.2410.03039 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.03039 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5042908536 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4084-3662 |
| authorships[0].author.display_name | Xiaoyu Wu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wu, Xiaoyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059144000 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5909-1005 |
| authorships[1].author.display_name | Jiaru Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Jiaru |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5029428048 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7536-5202 |
| authorships[2].author.display_name | Steven Y. Wu |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Wu, Steven |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.03039 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-31T00:00:00 |
| display_name | Leveraging Model Guidance to Extract Training Data from Personalized Diffusion Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.25380000472068787 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W2356093757, https://openalex.org/W2059618490, https://openalex.org/W3005909949, https://openalex.org/W3182926544, https://openalex.org/W2791072330, https://openalex.org/W2073173259, https://openalex.org/W2314887962, https://openalex.org/W4394916949, https://openalex.org/W4394050964, https://openalex.org/W2551249631 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.03039 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.03039 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.03039 |
| primary_location.id | pmh:oai:arXiv.org:2410.03039 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.03039 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.03039 |
| publication_date | 2024-10-03 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 86 |
| abstract_inverted_index.a | 14, 20, 110, 121, 162 |
| abstract_inverted_index.-- | 129 |
| abstract_inverted_index.By | 139 |
| abstract_inverted_index.DM | 16, 134 |
| abstract_inverted_index.In | 70 |
| abstract_inverted_index.To | 104 |
| abstract_inverted_index.We | 159 |
| abstract_inverted_index.as | 40, 120 |
| abstract_inverted_index.be | 78 |
| abstract_inverted_index.in | 124, 204 |
| abstract_inverted_index.is | 17, 66, 209 |
| abstract_inverted_index.of | 101, 195, 201 |
| abstract_inverted_index.on | 19, 179 |
| abstract_inverted_index.or | 28 |
| abstract_inverted_index.to | 24, 165 |
| abstract_inverted_index.we | 73, 107, 147 |
| abstract_inverted_index.20% | 200 |
| abstract_inverted_index.DMs | 83, 180 |
| abstract_inverted_index.Our | 116 |
| abstract_inverted_index.The | 207 |
| abstract_inverted_index.and | 42, 144, 187 |
| abstract_inverted_index.but | 96 |
| abstract_inverted_index.for | 10, 112 |
| abstract_inverted_index.may | 47 |
| abstract_inverted_index.not | 91 |
| abstract_inverted_index.our | 196 |
| abstract_inverted_index.set | 23 |
| abstract_inverted_index.the | 49, 125, 131, 136, 141, 149, 155, 167, 193 |
| abstract_inverted_index."Can | 75 |
| abstract_inverted_index.Many | 30 |
| abstract_inverted_index.also | 97 |
| abstract_inverted_index.ask: | 74 |
| abstract_inverted_index.code | 208 |
| abstract_inverted_index.data | 50, 65, 77, 93, 157, 203 |
| abstract_inverted_index.from | 80, 130, 171 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.most | 168, 205 |
| abstract_inverted_index.only | 92 |
| abstract_inverted_index.such | 39 |
| abstract_inverted_index.then | 160 |
| abstract_inverted_index.this | 71, 175 |
| abstract_inverted_index.used | 67 |
| abstract_inverted_index.when | 53, 63 |
| abstract_inverted_index.with | 182 |
| abstract_inverted_index.(DMs) | 2 |
| abstract_inverted_index.about | 199 |
| abstract_inverted_index.after | 145 |
| abstract_inverted_index.apply | 161 |
| abstract_inverted_index.arise | 62 |
| abstract_inverted_index.data. | 115, 138 |
| abstract_inverted_index.guide | 148 |
| abstract_inverted_index.image | 6, 22 |
| abstract_inverted_index.model | 45 |
| abstract_inverted_index.offer | 98 |
| abstract_inverted_index.risks | 52 |
| abstract_inverted_index.shift | 123 |
| abstract_inverted_index.small | 21 |
| abstract_inverted_index.these | 33, 81 |
| abstract_inverted_index.this, | 106 |
| abstract_inverted_index.those | 172 |
| abstract_inverted_index.using | 174 |
| abstract_inverted_index.where | 13 |
| abstract_inverted_index.would | 89 |
| abstract_inverted_index.Models | 1 |
| abstract_inverted_index.answer | 105 |
| abstract_inverted_index.become | 4 |
| abstract_inverted_index.before | 143 |
| abstract_inverted_index.cases. | 206 |
| abstract_inverted_index.during | 68 |
| abstract_inverted_index.images | 170 |
| abstract_inverted_index.method | 117 |
| abstract_inverted_index.models | 142 |
| abstract_inverted_index.online | 191 |
| abstract_inverted_index.owners | 46 |
| abstract_inverted_index.paper, | 72 |
| abstract_inverted_index.people | 31 |
| abstract_inverted_index.posted | 190 |
| abstract_inverted_index.shared | 84 |
| abstract_inverted_index.styles | 27 |
| abstract_inverted_index.tools, | 8 |
| abstract_inverted_index.toward | 135, 151 |
| abstract_inverted_index.upload | 32 |
| abstract_inverted_index.within | 154 |
| abstract_inverted_index.Civitai | 41 |
| abstract_inverted_index.capture | 25 |
| abstract_inverted_index.extract | 166 |
| abstract_inverted_index.gradual | 122 |
| abstract_inverted_index.leakage | 51, 94 |
| abstract_inverted_index.learned | 127 |
| abstract_inverted_index.method, | 197 |
| abstract_inverted_index.model's | 126 |
| abstract_inverted_index.online, | 36 |
| abstract_inverted_index.present | 90 |
| abstract_inverted_index.propose | 108 |
| abstract_inverted_index.regions | 153 |
| abstract_inverted_index.threats | 95 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.WikiArt, | 185 |
| abstract_inverted_index.concerns | 58 |
| abstract_inverted_index.datasets | 183 |
| abstract_inverted_index.evidence | 100 |
| abstract_inverted_index.few-shot | 11 |
| abstract_inverted_index.objects. | 29 |
| abstract_inverted_index.online?" | 85 |
| abstract_inverted_index.original | 132 |
| abstract_inverted_index.overlook | 48 |
| abstract_inverted_index.powerful | 5 |
| abstract_inverted_index.probable | 169 |
| abstract_inverted_index.specific | 26 |
| abstract_inverted_index.tangible | 99 |
| abstract_inverted_index.training | 76 |
| abstract_inverted_index.validate | 192 |
| abstract_inverted_index.Diffusion | 0 |
| abstract_inverted_index.Moreover, | 57 |
| abstract_inverted_index.algorithm | 164 |
| abstract_inverted_index.available | 210 |
| abstract_inverted_index.copyright | 60, 102 |
| abstract_inverted_index.extracted | 79 |
| abstract_inverted_index.fostering | 37 |
| abstract_inverted_index.framework | 111 |
| abstract_inverted_index.generated | 173 |
| abstract_inverted_index.guidance. | 177 |
| abstract_inverted_index.including | 184 |
| abstract_inverted_index.regarding | 59 |
| abstract_inverted_index.releasing | 54 |
| abstract_inverted_index.clustering | 163 |
| abstract_inverted_index.especially | 9 |
| abstract_inverted_index.extracting | 113, 198 |
| abstract_inverted_index.extraction | 88 |
| abstract_inverted_index.fine-tuned | 18, 55, 82, 156, 181 |
| abstract_inverted_index.generation | 7, 150 |
| abstract_inverted_index.pretrained | 15, 133 |
| abstract_inverted_index.real-world | 188 |
| abstract_inverted_index.successful | 87 |
| abstract_inverted_index.violations | 61 |
| abstract_inverted_index.DreamBooth, | 186 |
| abstract_inverted_index.Experiments | 178 |
| abstract_inverted_index.FineXtract, | 109 |
| abstract_inverted_index.checkpoints | 35, 189 |
| abstract_inverted_index.communities | 38 |
| abstract_inverted_index.fine-tuning | 12, 114, 119, 137, 202 |
| abstract_inverted_index.HuggingFace. | 43 |
| abstract_inverted_index.approximates | 118 |
| abstract_inverted_index.checkpoints. | 56 |
| abstract_inverted_index.distribution | 128 |
| abstract_inverted_index.extrapolated | 176 |
| abstract_inverted_index.fine-tuning, | 146 |
| abstract_inverted_index.fine-tuning. | 69 |
| abstract_inverted_index.personalized | 34 |
| abstract_inverted_index.unauthorized | 64 |
| abstract_inverted_index.distribution. | 158 |
| abstract_inverted_index.effectiveness | 194 |
| abstract_inverted_index.extrapolating | 140 |
| abstract_inverted_index.infringement. | 103 |
| abstract_inverted_index.high-probability | 152 |
| abstract_inverted_index.https://github.com/Nicholas0228/FineXtract. | 211 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |