Leveraging Representations from Intermediate Encoder-blocks for Synthetic Image Detection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.19091
The recently developed and publicly available synthetic image generation methods and services make it possible to create extremely realistic imagery on demand, raising great risks for the integrity and safety of online information. State-of-the-art Synthetic Image Detection (SID) research has led to strong evidence on the advantages of feature extraction from foundation models. However, such extracted features mostly encapsulate high-level visual semantics instead of fine-grained details, which are more important for the SID task. On the contrary, shallow layers encode low-level visual information. In this work, we leverage the image representations extracted by intermediate Transformer blocks of CLIP's image-encoder via a lightweight network that maps them to a learnable forgery-aware vector space capable of generalizing exceptionally well. We also employ a trainable module to incorporate the importance of each Transformer block to the final prediction. Our method is compared against the state-of-the-art by evaluating it on 20 test datasets and exhibits an average +10.6% absolute performance improvement. Notably, the best performing models require just a single epoch for training (~8 minutes). Code available at https://github.com/mever-team/rine.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.19091
- https://arxiv.org/pdf/2402.19091
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400516589
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400516589Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.19091Digital Object Identifier
- Title
-
Leveraging Representations from Intermediate Encoder-blocks for Synthetic Image DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-29Full publication date if available
- Authors
-
Christos Koutlis, Symeon PapadopoulosList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.19091Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.19091Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.19091Direct OA link when available
- Concepts
-
Encoder, Computer science, Image (mathematics), Artificial intelligence, Computer vision, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400516589 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.19091 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.19091 |
| ids.openalex | https://openalex.org/W4400516589 |
| fwci | |
| type | preprint |
| title | Leveraging Representations from Intermediate Encoder-blocks for Synthetic Image Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9070000052452087 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C118505674 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6727032661437988 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[0].display_name | Encoder |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6004446148872375 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C115961682 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5919526815414429 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[2].display_name | Image (mathematics) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5195425152778625 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4439114034175873 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C111919701 |
| concepts[5].level | 1 |
| concepts[5].score | 0.08843263983726501 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[5].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/encoder |
| keywords[0].score | 0.6727032661437988 |
| keywords[0].display_name | Encoder |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6004446148872375 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/image |
| keywords[2].score | 0.5919526815414429 |
| keywords[2].display_name | Image (mathematics) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5195425152778625 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.4439114034175873 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/operating-system |
| keywords[5].score | 0.08843263983726501 |
| keywords[5].display_name | Operating system |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.19091 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.19091 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.19091 |
| locations[1].id | doi:10.48550/arxiv.2402.19091 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.19091 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5024874767 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3682-408X |
| authorships[0].author.display_name | Christos Koutlis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Koutlis, Christos |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5013616365 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5441-7341 |
| authorships[1].author.display_name | Symeon Papadopoulos |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Papadopoulos, Symeon |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.19091 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-07-11T00:00:00 |
| display_name | Leveraging Representations from Intermediate Encoder-blocks for Synthetic Image Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9070000052452087 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2772917594, https://openalex.org/W2775347418, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.19091 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.19091 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.19091 |
| primary_location.id | pmh:oai:arXiv.org:2402.19091 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.19091 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.19091 |
| publication_date | 2024-02-29 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 100, 107, 120, 164 |
| abstract_inverted_index.20 | 146 |
| abstract_inverted_index.In | 83 |
| abstract_inverted_index.On | 74 |
| abstract_inverted_index.We | 117 |
| abstract_inverted_index.an | 151 |
| abstract_inverted_index.at | 173 |
| abstract_inverted_index.by | 92, 142 |
| abstract_inverted_index.is | 137 |
| abstract_inverted_index.it | 13, 144 |
| abstract_inverted_index.of | 30, 47, 63, 96, 113, 127 |
| abstract_inverted_index.on | 20, 44, 145 |
| abstract_inverted_index.to | 15, 41, 106, 123, 131 |
| abstract_inverted_index.we | 86 |
| abstract_inverted_index.(~8 | 169 |
| abstract_inverted_index.Our | 135 |
| abstract_inverted_index.SID | 72 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 3, 10, 28, 149 |
| abstract_inverted_index.are | 67 |
| abstract_inverted_index.for | 25, 70, 167 |
| abstract_inverted_index.has | 39 |
| abstract_inverted_index.led | 40 |
| abstract_inverted_index.the | 26, 45, 71, 75, 88, 125, 132, 140, 158 |
| abstract_inverted_index.via | 99 |
| abstract_inverted_index.Code | 171 |
| abstract_inverted_index.also | 118 |
| abstract_inverted_index.best | 159 |
| abstract_inverted_index.each | 128 |
| abstract_inverted_index.from | 50 |
| abstract_inverted_index.just | 163 |
| abstract_inverted_index.make | 12 |
| abstract_inverted_index.maps | 104 |
| abstract_inverted_index.more | 68 |
| abstract_inverted_index.such | 54 |
| abstract_inverted_index.test | 147 |
| abstract_inverted_index.that | 103 |
| abstract_inverted_index.them | 105 |
| abstract_inverted_index.this | 84 |
| abstract_inverted_index.(SID) | 37 |
| abstract_inverted_index.Image | 35 |
| abstract_inverted_index.block | 130 |
| abstract_inverted_index.epoch | 166 |
| abstract_inverted_index.final | 133 |
| abstract_inverted_index.great | 23 |
| abstract_inverted_index.image | 7, 89 |
| abstract_inverted_index.risks | 24 |
| abstract_inverted_index.space | 111 |
| abstract_inverted_index.task. | 73 |
| abstract_inverted_index.well. | 116 |
| abstract_inverted_index.which | 66 |
| abstract_inverted_index.work, | 85 |
| abstract_inverted_index.+10.6% | 153 |
| abstract_inverted_index.CLIP's | 97 |
| abstract_inverted_index.blocks | 95 |
| abstract_inverted_index.create | 16 |
| abstract_inverted_index.employ | 119 |
| abstract_inverted_index.encode | 79 |
| abstract_inverted_index.layers | 78 |
| abstract_inverted_index.method | 136 |
| abstract_inverted_index.models | 161 |
| abstract_inverted_index.module | 122 |
| abstract_inverted_index.mostly | 57 |
| abstract_inverted_index.online | 31 |
| abstract_inverted_index.safety | 29 |
| abstract_inverted_index.single | 165 |
| abstract_inverted_index.strong | 42 |
| abstract_inverted_index.vector | 110 |
| abstract_inverted_index.visual | 60, 81 |
| abstract_inverted_index.against | 139 |
| abstract_inverted_index.average | 152 |
| abstract_inverted_index.capable | 112 |
| abstract_inverted_index.demand, | 21 |
| abstract_inverted_index.feature | 48 |
| abstract_inverted_index.imagery | 19 |
| abstract_inverted_index.instead | 62 |
| abstract_inverted_index.methods | 9 |
| abstract_inverted_index.models. | 52 |
| abstract_inverted_index.network | 102 |
| abstract_inverted_index.raising | 22 |
| abstract_inverted_index.require | 162 |
| abstract_inverted_index.shallow | 77 |
| abstract_inverted_index.However, | 53 |
| abstract_inverted_index.Notably, | 157 |
| abstract_inverted_index.absolute | 154 |
| abstract_inverted_index.compared | 138 |
| abstract_inverted_index.datasets | 148 |
| abstract_inverted_index.details, | 65 |
| abstract_inverted_index.evidence | 43 |
| abstract_inverted_index.exhibits | 150 |
| abstract_inverted_index.features | 56 |
| abstract_inverted_index.leverage | 87 |
| abstract_inverted_index.possible | 14 |
| abstract_inverted_index.publicly | 4 |
| abstract_inverted_index.recently | 1 |
| abstract_inverted_index.research | 38 |
| abstract_inverted_index.services | 11 |
| abstract_inverted_index.training | 168 |
| abstract_inverted_index.Detection | 36 |
| abstract_inverted_index.Synthetic | 34 |
| abstract_inverted_index.available | 5, 172 |
| abstract_inverted_index.contrary, | 76 |
| abstract_inverted_index.developed | 2 |
| abstract_inverted_index.extracted | 55, 91 |
| abstract_inverted_index.extremely | 17 |
| abstract_inverted_index.important | 69 |
| abstract_inverted_index.integrity | 27 |
| abstract_inverted_index.learnable | 108 |
| abstract_inverted_index.low-level | 80 |
| abstract_inverted_index.minutes). | 170 |
| abstract_inverted_index.realistic | 18 |
| abstract_inverted_index.semantics | 61 |
| abstract_inverted_index.synthetic | 6 |
| abstract_inverted_index.trainable | 121 |
| abstract_inverted_index.advantages | 46 |
| abstract_inverted_index.evaluating | 143 |
| abstract_inverted_index.extraction | 49 |
| abstract_inverted_index.foundation | 51 |
| abstract_inverted_index.generation | 8 |
| abstract_inverted_index.high-level | 59 |
| abstract_inverted_index.importance | 126 |
| abstract_inverted_index.performing | 160 |
| abstract_inverted_index.Transformer | 94, 129 |
| abstract_inverted_index.encapsulate | 58 |
| abstract_inverted_index.incorporate | 124 |
| abstract_inverted_index.lightweight | 101 |
| abstract_inverted_index.performance | 155 |
| abstract_inverted_index.prediction. | 134 |
| abstract_inverted_index.fine-grained | 64 |
| abstract_inverted_index.generalizing | 114 |
| abstract_inverted_index.improvement. | 156 |
| abstract_inverted_index.information. | 32, 82 |
| abstract_inverted_index.intermediate | 93 |
| abstract_inverted_index.exceptionally | 115 |
| abstract_inverted_index.forgery-aware | 109 |
| abstract_inverted_index.image-encoder | 98 |
| abstract_inverted_index.representations | 90 |
| abstract_inverted_index.State-of-the-art | 33 |
| abstract_inverted_index.state-of-the-art | 141 |
| abstract_inverted_index.https://github.com/mever-team/rine. | 174 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |