Leveraging Scheme for Cross-Study Microbiome Machine Learning Prediction and Feature Evaluations Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/bioengineering10020231
The microbiota has proved to be one of the critical factors for many diseases, and researchers have been using microbiome data for disease prediction. However, models trained on one independent microbiome study may not be easily applicable to other independent studies due to the high level of variability in microbiome data. In this study, we developed a method for improving the generalizability and interpretability of machine learning models for predicting three different diseases (colorectal cancer, Crohn’s disease, and immunotherapy response) using nine independent microbiome datasets. Our method involves combining a smaller dataset with a larger dataset, and we found that using at least 25% of the target samples in the source data resulted in improved model performance. We determined random forest as our top model and employed feature selection to identify common and important taxa for disease prediction across the different studies. Our results suggest that this leveraging scheme is a promising approach for improving the accuracy and interpretability of machine learning models for predicting diseases based on microbiome data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/bioengineering10020231
- https://www.mdpi.com/2306-5354/10/2/231/pdf?version=1676387433
- OA Status
- gold
- Cited By
- 4
- References
- 74
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4319756428
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4319756428Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/bioengineering10020231Digital Object Identifier
- Title
-
Leveraging Scheme for Cross-Study Microbiome Machine Learning Prediction and Feature EvaluationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-08Full publication date if available
- Authors
-
Kuncheng Song, Yi‐Hui ZhouList of authors in order
- Landing page
-
https://doi.org/10.3390/bioengineering10020231Publisher landing page
- PDF URL
-
https://www.mdpi.com/2306-5354/10/2/231/pdf?version=1676387433Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2306-5354/10/2/231/pdf?version=1676387433Direct OA link when available
- Concepts
-
Interpretability, Microbiome, Machine learning, Random forest, Artificial intelligence, Feature selection, Generalizability theory, Computer science, Human microbiome, Support vector machine, Feature (linguistics), Data mining, Bioinformatics, Biology, Statistics, Mathematics, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
74Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4319756428 |
|---|---|
| doi | https://doi.org/10.3390/bioengineering10020231 |
| ids.doi | https://doi.org/10.3390/bioengineering10020231 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36829725 |
| ids.openalex | https://openalex.org/W4319756428 |
| fwci | 0.74268163 |
| type | article |
| title | Leveraging Scheme for Cross-Study Microbiome Machine Learning Prediction and Feature Evaluations |
| awards[0].id | https://openalex.org/G7802926395 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | EEC-2133504 |
| awards[0].funder_display_name | National Science Foundation |
| biblio.issue | 2 |
| biblio.volume | 10 |
| biblio.last_page | 231 |
| biblio.first_page | 231 |
| topics[0].id | https://openalex.org/T10066 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9937000274658203 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gut microbiota and health |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.982200026512146 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9409999847412109 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| is_xpac | False |
| apc_list.value | 1700 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1840 |
| apc_paid.value | 1700 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1840 |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9412640333175659 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C143121216 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7993853092193604 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1330402 |
| concepts[1].display_name | Microbiome |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7401079535484314 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C169258074 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7052583694458008 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[3].display_name | Random forest |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6495951414108276 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C148483581 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6476920247077942 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[5].display_name | Feature selection |
| concepts[6].id | https://openalex.org/C27158222 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6383464336395264 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5532422 |
| concepts[6].display_name | Generalizability theory |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.6327133178710938 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C91478284 |
| concepts[8].level | 3 |
| concepts[8].score | 0.47371023893356323 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6623796 |
| concepts[8].display_name | Human microbiome |
| concepts[9].id | https://openalex.org/C12267149 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4406222701072693 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[9].display_name | Support vector machine |
| concepts[10].id | https://openalex.org/C2776401178 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4391731917858124 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[10].display_name | Feature (linguistics) |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4086947739124298 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C60644358 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2710828185081482 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[12].display_name | Bioinformatics |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1714957356452942 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11287263035774231 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.078046053647995 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.9412640333175659 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/microbiome |
| keywords[1].score | 0.7993853092193604 |
| keywords[1].display_name | Microbiome |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.7401079535484314 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/random-forest |
| keywords[3].score | 0.7052583694458008 |
| keywords[3].display_name | Random forest |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6495951414108276 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/feature-selection |
| keywords[5].score | 0.6476920247077942 |
| keywords[5].display_name | Feature selection |
| keywords[6].id | https://openalex.org/keywords/generalizability-theory |
| keywords[6].score | 0.6383464336395264 |
| keywords[6].display_name | Generalizability theory |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.6327133178710938 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/human-microbiome |
| keywords[8].score | 0.47371023893356323 |
| keywords[8].display_name | Human microbiome |
| keywords[9].id | https://openalex.org/keywords/support-vector-machine |
| keywords[9].score | 0.4406222701072693 |
| keywords[9].display_name | Support vector machine |
| keywords[10].id | https://openalex.org/keywords/feature |
| keywords[10].score | 0.4391731917858124 |
| keywords[10].display_name | Feature (linguistics) |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.4086947739124298 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/bioinformatics |
| keywords[12].score | 0.2710828185081482 |
| keywords[12].display_name | Bioinformatics |
| keywords[13].id | https://openalex.org/keywords/biology |
| keywords[13].score | 0.1714957356452942 |
| keywords[13].display_name | Biology |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.11287263035774231 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.078046053647995 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/bioengineering10020231 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179121 |
| locations[0].source.issn | 2306-5354 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2306-5354 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Bioengineering |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2306-5354/10/2/231/pdf?version=1676387433 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bioengineering |
| locations[0].landing_page_url | https://doi.org/10.3390/bioengineering10020231 |
| locations[1].id | pmid:36829725 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Bioengineering (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36829725 |
| locations[2].id | pmh:oai:doaj.org/article:38412581d1254a1ab1879c11d5caaa69 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Bioengineering, Vol 10, Iss 2, p 231 (2023) |
| locations[2].landing_page_url | https://doaj.org/article/38412581d1254a1ab1879c11d5caaa69 |
| locations[3].id | pmh:oai:mdpi.com:/2306-5354/10/2/231/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Pages: 231 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/bioengineering10020231 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9952031 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Bioengineering (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9952031 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5086970111 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8680-1970 |
| authorships[0].author.display_name | Kuncheng Song |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[0].affiliations[0].raw_affiliation_string | Bioinformatics Research Center, Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA |
| authorships[0].institutions[0].id | https://openalex.org/I137902535 |
| authorships[0].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | North Carolina State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kuncheng Song |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Bioinformatics Research Center, Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA |
| authorships[1].author.id | https://openalex.org/A5100701642 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4092-7463 |
| authorships[1].author.display_name | Yi‐Hui Zhou |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[1].affiliations[0].raw_affiliation_string | Departments of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I137902535 |
| authorships[1].affiliations[1].raw_affiliation_string | Bioinformatics Research Center, Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA |
| authorships[1].institutions[0].id | https://openalex.org/I137902535 |
| authorships[1].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | North Carolina State University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Yi-Hui Zhou |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Bioinformatics Research Center, Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA, Departments of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2306-5354/10/2/231/pdf?version=1676387433 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Leveraging Scheme for Cross-Study Microbiome Machine Learning Prediction and Feature Evaluations |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10066 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9937000274658203 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gut microbiota and health |
| related_works | https://openalex.org/W4378220270, https://openalex.org/W4361806667, https://openalex.org/W2595711621, https://openalex.org/W1968369492, https://openalex.org/W2043102924, https://openalex.org/W2965705087, https://openalex.org/W2905020444, https://openalex.org/W4312678993, https://openalex.org/W3137578603, https://openalex.org/W2069773272 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/bioengineering10020231 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179121 |
| best_oa_location.source.issn | 2306-5354 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2306-5354 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Bioengineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2306-5354/10/2/231/pdf?version=1676387433 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bioengineering |
| best_oa_location.landing_page_url | https://doi.org/10.3390/bioengineering10020231 |
| primary_location.id | doi:10.3390/bioengineering10020231 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179121 |
| primary_location.source.issn | 2306-5354 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2306-5354 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Bioengineering |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2306-5354/10/2/231/pdf?version=1676387433 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bioengineering |
| primary_location.landing_page_url | https://doi.org/10.3390/bioengineering10020231 |
| publication_date | 2023-02-08 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3149769804, https://openalex.org/W2947189704, https://openalex.org/W2998718302, https://openalex.org/W3184873476, https://openalex.org/W2085284704, https://openalex.org/W2314413252, https://openalex.org/W2130725058, https://openalex.org/W4200479267, https://openalex.org/W4290830388, https://openalex.org/W2765314233, https://openalex.org/W2979785336, https://openalex.org/W2766903152, https://openalex.org/W2782333299, https://openalex.org/W2755951643, https://openalex.org/W2953583829, https://openalex.org/W3111473227, https://openalex.org/W6744512508, https://openalex.org/W3016191995, https://openalex.org/W2587628024, https://openalex.org/W2808937895, https://openalex.org/W3135775894, https://openalex.org/W2897874992, https://openalex.org/W2912871672, https://openalex.org/W4210320669, https://openalex.org/W2932049125, https://openalex.org/W2132755184, https://openalex.org/W4308531821, https://openalex.org/W2165698076, https://openalex.org/W2767984705, https://openalex.org/W2807194798, https://openalex.org/W2401404581, https://openalex.org/W2034285706, https://openalex.org/W2963276645, https://openalex.org/W30236741, https://openalex.org/W3043062835, https://openalex.org/W2156665896, https://openalex.org/W2911964244, https://openalex.org/W2157395790, https://openalex.org/W6677656871, https://openalex.org/W6797317855, https://openalex.org/W2056279562, https://openalex.org/W2027499890, https://openalex.org/W2118327902, https://openalex.org/W1488156261, https://openalex.org/W2006617902, https://openalex.org/W6675354045, https://openalex.org/W3120414327, https://openalex.org/W2168104781, https://openalex.org/W3045227871, https://openalex.org/W4293760970, https://openalex.org/W3048018108, https://openalex.org/W3047688225, https://openalex.org/W4288177906, https://openalex.org/W3107673571, https://openalex.org/W3117201729, https://openalex.org/W3203123631, https://openalex.org/W4220988384, https://openalex.org/W2282772932, https://openalex.org/W2791045368, https://openalex.org/W2598697012, https://openalex.org/W2510423069, https://openalex.org/W2904925223, https://openalex.org/W4213270373, https://openalex.org/W2793417844, https://openalex.org/W4242109183, https://openalex.org/W2969329470, https://openalex.org/W2963245811, https://openalex.org/W3162194652, https://openalex.org/W2118585731, https://openalex.org/W3102027041, https://openalex.org/W2760930044, https://openalex.org/W2101234009, https://openalex.org/W3085859675, https://openalex.org/W2978395615 |
| referenced_works_count | 74 |
| abstract_inverted_index.a | 56, 89, 93, 150 |
| abstract_inverted_index.In | 51 |
| abstract_inverted_index.We | 117 |
| abstract_inverted_index.as | 121 |
| abstract_inverted_index.at | 101 |
| abstract_inverted_index.be | 5, 34 |
| abstract_inverted_index.in | 48, 108, 113 |
| abstract_inverted_index.is | 149 |
| abstract_inverted_index.of | 7, 46, 64, 104, 159 |
| abstract_inverted_index.on | 27, 167 |
| abstract_inverted_index.to | 4, 37, 42, 129 |
| abstract_inverted_index.we | 54, 97 |
| abstract_inverted_index.25% | 103 |
| abstract_inverted_index.Our | 85, 142 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 14, 62, 77, 96, 125, 132, 157 |
| abstract_inverted_index.due | 41 |
| abstract_inverted_index.for | 11, 21, 58, 68, 135, 153, 163 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.may | 32 |
| abstract_inverted_index.not | 33 |
| abstract_inverted_index.one | 6, 28 |
| abstract_inverted_index.our | 122 |
| abstract_inverted_index.the | 8, 43, 60, 105, 109, 139, 155 |
| abstract_inverted_index.top | 123 |
| abstract_inverted_index.been | 17 |
| abstract_inverted_index.data | 20, 111 |
| abstract_inverted_index.have | 16 |
| abstract_inverted_index.high | 44 |
| abstract_inverted_index.many | 12 |
| abstract_inverted_index.nine | 81 |
| abstract_inverted_index.taxa | 134 |
| abstract_inverted_index.that | 99, 145 |
| abstract_inverted_index.this | 52, 146 |
| abstract_inverted_index.with | 92 |
| abstract_inverted_index.based | 166 |
| abstract_inverted_index.data. | 50, 169 |
| abstract_inverted_index.found | 98 |
| abstract_inverted_index.least | 102 |
| abstract_inverted_index.level | 45 |
| abstract_inverted_index.model | 115, 124 |
| abstract_inverted_index.other | 38 |
| abstract_inverted_index.study | 31 |
| abstract_inverted_index.three | 70 |
| abstract_inverted_index.using | 18, 80, 100 |
| abstract_inverted_index.across | 138 |
| abstract_inverted_index.common | 131 |
| abstract_inverted_index.easily | 35 |
| abstract_inverted_index.forest | 120 |
| abstract_inverted_index.larger | 94 |
| abstract_inverted_index.method | 57, 86 |
| abstract_inverted_index.models | 25, 67, 162 |
| abstract_inverted_index.proved | 3 |
| abstract_inverted_index.random | 119 |
| abstract_inverted_index.scheme | 148 |
| abstract_inverted_index.source | 110 |
| abstract_inverted_index.study, | 53 |
| abstract_inverted_index.target | 106 |
| abstract_inverted_index.cancer, | 74 |
| abstract_inverted_index.dataset | 91 |
| abstract_inverted_index.disease | 22, 136 |
| abstract_inverted_index.factors | 10 |
| abstract_inverted_index.feature | 127 |
| abstract_inverted_index.machine | 65, 160 |
| abstract_inverted_index.results | 143 |
| abstract_inverted_index.samples | 107 |
| abstract_inverted_index.smaller | 90 |
| abstract_inverted_index.studies | 40 |
| abstract_inverted_index.suggest | 144 |
| abstract_inverted_index.trained | 26 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.accuracy | 156 |
| abstract_inverted_index.approach | 152 |
| abstract_inverted_index.critical | 9 |
| abstract_inverted_index.dataset, | 95 |
| abstract_inverted_index.disease, | 76 |
| abstract_inverted_index.diseases | 72, 165 |
| abstract_inverted_index.employed | 126 |
| abstract_inverted_index.identify | 130 |
| abstract_inverted_index.improved | 114 |
| abstract_inverted_index.involves | 87 |
| abstract_inverted_index.learning | 66, 161 |
| abstract_inverted_index.resulted | 112 |
| abstract_inverted_index.studies. | 141 |
| abstract_inverted_index.Crohn’s | 75 |
| abstract_inverted_index.combining | 88 |
| abstract_inverted_index.datasets. | 84 |
| abstract_inverted_index.developed | 55 |
| abstract_inverted_index.different | 71, 140 |
| abstract_inverted_index.diseases, | 13 |
| abstract_inverted_index.important | 133 |
| abstract_inverted_index.improving | 59, 154 |
| abstract_inverted_index.promising | 151 |
| abstract_inverted_index.response) | 79 |
| abstract_inverted_index.selection | 128 |
| abstract_inverted_index.applicable | 36 |
| abstract_inverted_index.determined | 118 |
| abstract_inverted_index.leveraging | 147 |
| abstract_inverted_index.microbiome | 19, 30, 49, 83, 168 |
| abstract_inverted_index.microbiota | 1 |
| abstract_inverted_index.predicting | 69, 164 |
| abstract_inverted_index.prediction | 137 |
| abstract_inverted_index.(colorectal | 73 |
| abstract_inverted_index.independent | 29, 39, 82 |
| abstract_inverted_index.prediction. | 23 |
| abstract_inverted_index.researchers | 15 |
| abstract_inverted_index.variability | 47 |
| abstract_inverted_index.performance. | 116 |
| abstract_inverted_index.immunotherapy | 78 |
| abstract_inverted_index.generalizability | 61 |
| abstract_inverted_index.interpretability | 63, 158 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5100701642 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I137902535 |
| citation_normalized_percentile.value | 0.7147018 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |