Leveraging Shapley Additive Explanations for Feature Selection in Ensemble Models for Diabetes Prediction Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/bioengineering11121215
Diabetes, a significant global health crisis, is primarily driven in India by unhealthy diets and sedentary lifestyles, with rapid urbanization amplifying these effects through convenience-oriented living and limited physical activity opportunities, underscoring the need for advanced preventative strategies and technology for effective management. This study integrates Shapley Additive explanations (SHAPs) into ensemble machine learning models to improve the accuracy and efficiency of diabetes predictions. By identifying the most influential features using SHAP, this study examined their role in maintaining high predictive performance while minimizing computational demands. The impact of feature selection on model accuracy was assessed across ten models using three feature sets: all features, the top three influential features, and all except these top three. Models focusing on the top three features achieved superior performance, with the ensemble model attaining a better performance in most of the metrics, outperforming comparable approaches. Notably, excluding these features led to a significant decline in performance, reinforcing their critical influence. These findings validate the effectiveness of targeted feature selection for efficient and robust clinical applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/bioengineering11121215
- OA Status
- gold
- Cited By
- 10
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404926645
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404926645Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/bioengineering11121215Digital Object Identifier
- Title
-
Leveraging Shapley Additive Explanations for Feature Selection in Ensemble Models for Diabetes PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-30Full publication date if available
- Authors
-
Prasant Mohanty, Sharmila Anand John Francis, Rabindra K. Barik, Diptendu Sinha Roy, Manob Jyoti SaikiaList of authors in order
- Landing page
-
https://doi.org/10.3390/bioengineering11121215Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/bioengineering11121215Direct OA link when available
- Concepts
-
Feature selection, Feature (linguistics), Computer science, Machine learning, Selection (genetic algorithm), Predictive modelling, Artificial intelligence, Ensemble forecasting, Ensemble learning, Model selection, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404926645 |
|---|---|
| doi | https://doi.org/10.3390/bioengineering11121215 |
| ids.doi | https://doi.org/10.3390/bioengineering11121215 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39768033 |
| ids.openalex | https://openalex.org/W4404926645 |
| fwci | 14.39093484 |
| type | article |
| title | Leveraging Shapley Additive Explanations for Feature Selection in Ensemble Models for Diabetes Prediction |
| biblio.issue | 12 |
| biblio.volume | 11 |
| biblio.last_page | 1215 |
| biblio.first_page | 1215 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9958999752998352 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T12026 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9776999950408936 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Explainable Artificial Intelligence (XAI) |
| is_xpac | False |
| apc_list.value | 1700 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1840 |
| apc_paid.value | 1700 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1840 |
| concepts[0].id | https://openalex.org/C148483581 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8309853076934814 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[0].display_name | Feature selection |
| concepts[1].id | https://openalex.org/C2776401178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6495959758758545 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[1].display_name | Feature (linguistics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6450712084770203 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6440001726150513 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C81917197 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6061378717422485 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[4].display_name | Selection (genetic algorithm) |
| concepts[5].id | https://openalex.org/C45804977 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5593588948249817 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[5].display_name | Predictive modelling |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5246879458427429 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119898033 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5071558952331543 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3433888 |
| concepts[7].display_name | Ensemble forecasting |
| concepts[8].id | https://openalex.org/C45942800 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4445911645889282 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[8].display_name | Ensemble learning |
| concepts[9].id | https://openalex.org/C93959086 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42739319801330566 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6888345 |
| concepts[9].display_name | Model selection |
| concepts[10].id | https://openalex.org/C41895202 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[10].display_name | Linguistics |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/feature-selection |
| keywords[0].score | 0.8309853076934814 |
| keywords[0].display_name | Feature selection |
| keywords[1].id | https://openalex.org/keywords/feature |
| keywords[1].score | 0.6495959758758545 |
| keywords[1].display_name | Feature (linguistics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6450712084770203 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.6440001726150513 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/selection |
| keywords[4].score | 0.6061378717422485 |
| keywords[4].display_name | Selection (genetic algorithm) |
| keywords[5].id | https://openalex.org/keywords/predictive-modelling |
| keywords[5].score | 0.5593588948249817 |
| keywords[5].display_name | Predictive modelling |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5246879458427429 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/ensemble-forecasting |
| keywords[7].score | 0.5071558952331543 |
| keywords[7].display_name | Ensemble forecasting |
| keywords[8].id | https://openalex.org/keywords/ensemble-learning |
| keywords[8].score | 0.4445911645889282 |
| keywords[8].display_name | Ensemble learning |
| keywords[9].id | https://openalex.org/keywords/model-selection |
| keywords[9].score | 0.42739319801330566 |
| keywords[9].display_name | Model selection |
| language | en |
| locations[0].id | doi:10.3390/bioengineering11121215 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179121 |
| locations[0].source.issn | 2306-5354 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2306-5354 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Bioengineering |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bioengineering |
| locations[0].landing_page_url | https://doi.org/10.3390/bioengineering11121215 |
| locations[1].id | pmid:39768033 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Bioengineering (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39768033 |
| locations[2].id | pmh:oai:doaj.org/article:cdbd7eda9fe34c868701ce6b8ee8c794 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Bioengineering, Vol 11, Iss 12, p 1215 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/cdbd7eda9fe34c868701ce6b8ee8c794 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11673338 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Bioengineering (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11673338 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5032707613 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5947-2043 |
| authorships[0].author.display_name | Prasant Mohanty |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9523339 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, National Institute of Technology, Meghalaya 793003, India |
| authorships[0].institutions[0].id | https://openalex.org/I9523339 |
| authorships[0].institutions[0].ror | https://ror.org/020vd6n84 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9523339 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | National Institute of Technology Meghalaya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Prasant Kumar Mohanty |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, National Institute of Technology, Meghalaya 793003, India |
| authorships[1].author.id | https://openalex.org/A5021832703 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9154-7287 |
| authorships[1].author.display_name | Sharmila Anand John Francis |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I82952536 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, King Khalid University, Abha Campus, Rijal Alma, Abha 61421, Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I82952536 |
| authorships[1].institutions[0].ror | https://ror.org/052kwzs30 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82952536 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | King Khalid University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sharmila Anand John Francis |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, King Khalid University, Abha Campus, Rijal Alma, Abha 61421, Saudi Arabia |
| authorships[2].author.id | https://openalex.org/A5008933435 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3086-3782 |
| authorships[2].author.display_name | Rabindra K. Barik |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I67357951 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Applications, KIIT Deemed to be University, Bhubaneswar 751024, India |
| authorships[2].institutions[0].id | https://openalex.org/I67357951 |
| authorships[2].institutions[0].ror | https://ror.org/00k8zt527 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I67357951 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | KIIT University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rabindra Kumar Barik |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Applications, KIIT Deemed to be University, Bhubaneswar 751024, India |
| authorships[3].author.id | https://openalex.org/A5011943818 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9731-2534 |
| authorships[3].author.display_name | Diptendu Sinha Roy |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9523339 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, National Institute of Technology, Meghalaya 793003, India |
| authorships[3].institutions[0].id | https://openalex.org/I9523339 |
| authorships[3].institutions[0].ror | https://ror.org/020vd6n84 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9523339 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | National Institute of Technology Meghalaya |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Diptendu Sinha Roy |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering, National Institute of Technology, Meghalaya 793003, India |
| authorships[4].author.id | https://openalex.org/A5030603016 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6656-4333 |
| authorships[4].author.display_name | Manob Jyoti Saikia |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I94658018 |
| authorships[4].affiliations[0].raw_affiliation_string | Biomedical Sensors & Systems Lab, University of Memphis, Memphis, TN 38152, USA |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I94658018 |
| authorships[4].affiliations[1].raw_affiliation_string | Electrical and Computer Engineering Department, University of Memphis, Memphis, TN 38152, USA |
| authorships[4].institutions[0].id | https://openalex.org/I94658018 |
| authorships[4].institutions[0].ror | https://ror.org/01cq23130 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I94658018 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Memphis |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Manob Jyoti Saikia |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Biomedical Sensors & Systems Lab, University of Memphis, Memphis, TN 38152, USA, Electrical and Computer Engineering Department, University of Memphis, Memphis, TN 38152, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/bioengineering11121215 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Leveraging Shapley Additive Explanations for Feature Selection in Ensemble Models for Diabetes Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W2794896638, https://openalex.org/W2891633941, https://openalex.org/W3202800081, https://openalex.org/W3101614107, https://openalex.org/W1909207154, https://openalex.org/W4390971112, https://openalex.org/W3036530763, https://openalex.org/W3124390867, https://openalex.org/W1514365828, https://openalex.org/W3204228978 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/bioengineering11121215 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179121 |
| best_oa_location.source.issn | 2306-5354 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2306-5354 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Bioengineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bioengineering |
| best_oa_location.landing_page_url | https://doi.org/10.3390/bioengineering11121215 |
| primary_location.id | doi:10.3390/bioengineering11121215 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179121 |
| primary_location.source.issn | 2306-5354 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2306-5354 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Bioengineering |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bioengineering |
| primary_location.landing_page_url | https://doi.org/10.3390/bioengineering11121215 |
| publication_date | 2024-11-30 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4366235782, https://openalex.org/W2956655078, https://openalex.org/W6736181796, https://openalex.org/W4307727682, https://openalex.org/W2972869264, https://openalex.org/W3033402950, https://openalex.org/W2890761071, https://openalex.org/W4387953897, https://openalex.org/W4282979648, https://openalex.org/W4386879939, https://openalex.org/W4319997244, https://openalex.org/W4387012889, https://openalex.org/W4379052745, https://openalex.org/W4327808499, https://openalex.org/W4401889052, https://openalex.org/W4281702443, https://openalex.org/W4221125739, https://openalex.org/W2902143327, https://openalex.org/W4322501840, https://openalex.org/W4297478341, https://openalex.org/W4311364090, https://openalex.org/W4366977711, https://openalex.org/W4385660235, https://openalex.org/W4391074646, https://openalex.org/W4312085894, https://openalex.org/W2987201163, https://openalex.org/W6745609711, https://openalex.org/W2984432074, https://openalex.org/W1981976602, https://openalex.org/W6737947904, https://openalex.org/W2157941646, https://openalex.org/W2999368888, https://openalex.org/W2606251550, https://openalex.org/W2962862931, https://openalex.org/W3081125651, https://openalex.org/W2768348081 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 1, 131, 148 |
| abstract_inverted_index.By | 64 |
| abstract_inverted_index.by | 11 |
| abstract_inverted_index.in | 9, 77, 134, 151 |
| abstract_inverted_index.is | 6 |
| abstract_inverted_index.of | 61, 88, 136, 162 |
| abstract_inverted_index.on | 91, 118 |
| abstract_inverted_index.to | 55, 147 |
| abstract_inverted_index.The | 86 |
| abstract_inverted_index.all | 103, 111 |
| abstract_inverted_index.and | 14, 26, 38, 59, 110, 168 |
| abstract_inverted_index.for | 34, 40, 166 |
| abstract_inverted_index.led | 146 |
| abstract_inverted_index.ten | 97 |
| abstract_inverted_index.the | 32, 57, 66, 105, 119, 127, 137, 160 |
| abstract_inverted_index.top | 106, 114, 120 |
| abstract_inverted_index.was | 94 |
| abstract_inverted_index.This | 43 |
| abstract_inverted_index.high | 79 |
| abstract_inverted_index.into | 50 |
| abstract_inverted_index.most | 67, 135 |
| abstract_inverted_index.need | 33 |
| abstract_inverted_index.role | 76 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.with | 17, 126 |
| abstract_inverted_index.India | 10 |
| abstract_inverted_index.SHAP, | 71 |
| abstract_inverted_index.These | 157 |
| abstract_inverted_index.diets | 13 |
| abstract_inverted_index.model | 92, 129 |
| abstract_inverted_index.rapid | 18 |
| abstract_inverted_index.sets: | 102 |
| abstract_inverted_index.study | 44, 73 |
| abstract_inverted_index.their | 75, 154 |
| abstract_inverted_index.these | 21, 113, 144 |
| abstract_inverted_index.three | 100, 107, 121 |
| abstract_inverted_index.using | 70, 99 |
| abstract_inverted_index.while | 82 |
| abstract_inverted_index.Models | 116 |
| abstract_inverted_index.across | 96 |
| abstract_inverted_index.better | 132 |
| abstract_inverted_index.driven | 8 |
| abstract_inverted_index.except | 112 |
| abstract_inverted_index.global | 3 |
| abstract_inverted_index.health | 4 |
| abstract_inverted_index.impact | 87 |
| abstract_inverted_index.living | 25 |
| abstract_inverted_index.models | 54, 98 |
| abstract_inverted_index.robust | 169 |
| abstract_inverted_index.three. | 115 |
| abstract_inverted_index.(SHAPs) | 49 |
| abstract_inverted_index.Shapley | 46 |
| abstract_inverted_index.crisis, | 5 |
| abstract_inverted_index.decline | 150 |
| abstract_inverted_index.effects | 22 |
| abstract_inverted_index.feature | 89, 101, 164 |
| abstract_inverted_index.improve | 56 |
| abstract_inverted_index.limited | 27 |
| abstract_inverted_index.machine | 52 |
| abstract_inverted_index.through | 23 |
| abstract_inverted_index.Additive | 47 |
| abstract_inverted_index.Notably, | 142 |
| abstract_inverted_index.accuracy | 58, 93 |
| abstract_inverted_index.achieved | 123 |
| abstract_inverted_index.activity | 29 |
| abstract_inverted_index.advanced | 35 |
| abstract_inverted_index.assessed | 95 |
| abstract_inverted_index.clinical | 170 |
| abstract_inverted_index.critical | 155 |
| abstract_inverted_index.demands. | 85 |
| abstract_inverted_index.diabetes | 62 |
| abstract_inverted_index.ensemble | 51, 128 |
| abstract_inverted_index.examined | 74 |
| abstract_inverted_index.features | 69, 122, 145 |
| abstract_inverted_index.findings | 158 |
| abstract_inverted_index.focusing | 117 |
| abstract_inverted_index.learning | 53 |
| abstract_inverted_index.metrics, | 138 |
| abstract_inverted_index.physical | 28 |
| abstract_inverted_index.superior | 124 |
| abstract_inverted_index.targeted | 163 |
| abstract_inverted_index.validate | 159 |
| abstract_inverted_index.Diabetes, | 0 |
| abstract_inverted_index.attaining | 130 |
| abstract_inverted_index.effective | 41 |
| abstract_inverted_index.efficient | 167 |
| abstract_inverted_index.excluding | 143 |
| abstract_inverted_index.features, | 104, 109 |
| abstract_inverted_index.primarily | 7 |
| abstract_inverted_index.sedentary | 15 |
| abstract_inverted_index.selection | 90, 165 |
| abstract_inverted_index.unhealthy | 12 |
| abstract_inverted_index.amplifying | 20 |
| abstract_inverted_index.comparable | 140 |
| abstract_inverted_index.efficiency | 60 |
| abstract_inverted_index.influence. | 156 |
| abstract_inverted_index.integrates | 45 |
| abstract_inverted_index.minimizing | 83 |
| abstract_inverted_index.predictive | 80 |
| abstract_inverted_index.strategies | 37 |
| abstract_inverted_index.technology | 39 |
| abstract_inverted_index.approaches. | 141 |
| abstract_inverted_index.identifying | 65 |
| abstract_inverted_index.influential | 68, 108 |
| abstract_inverted_index.lifestyles, | 16 |
| abstract_inverted_index.maintaining | 78 |
| abstract_inverted_index.management. | 42 |
| abstract_inverted_index.performance | 81, 133 |
| abstract_inverted_index.reinforcing | 153 |
| abstract_inverted_index.significant | 2, 149 |
| abstract_inverted_index.explanations | 48 |
| abstract_inverted_index.performance, | 125, 152 |
| abstract_inverted_index.predictions. | 63 |
| abstract_inverted_index.preventative | 36 |
| abstract_inverted_index.underscoring | 31 |
| abstract_inverted_index.urbanization | 19 |
| abstract_inverted_index.applications. | 171 |
| abstract_inverted_index.computational | 84 |
| abstract_inverted_index.effectiveness | 161 |
| abstract_inverted_index.outperforming | 139 |
| abstract_inverted_index.opportunities, | 30 |
| abstract_inverted_index.convenience-oriented | 24 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5030603016 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I94658018 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.9776033 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |