Leveraging User-Generated Comments and Fused BiLSTM Models to Detect and Predict Issues with Mobile Apps Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.32604/cmc.2024.048270
In the last decade, technical advancements and faster Internet speeds have also led to an increasing number of mobile devices and users.Thus, all contributors to society, whether young or old members, can use these mobile apps.The use of these apps eases our daily lives, and all customers who need any type of service can access it easily, comfortably, and efficiently through mobile apps.Particularly, Saudi Arabia greatly depends on digital services to assist people and visitors.Such mobile devices are used in organizing daily work schedules and services, particularly during two large occasions, Umrah and Hajj.However, pilgrims encounter mobile app issues such as slowness, conflict, unreliability, or user-unfriendliness.Pilgrims comment on these issues on mobile app platforms through reviews of their experiences with these digital services.Scholars have made several attempts to solve such mobile issues by reporting bugs or non-functional requirements by utilizing user comments.However, solving such issues is a great challenge, and the issues still exist.Therefore, this study aims to propose a hybrid deep learning model to classify and predict mobile app software issues encountered by millions of pilgrims during the Hajj and Umrah periods from the user perspective.Firstly, a dataset was constructed using user-generated comments from relevant mobile apps using natural language processing methods, including information extraction, the annotation process, and pre-processing steps, considering a multi-class classification problem.Then, several experiments were conducted using common machine learning classifiers, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) architectures, to examine the performance of the proposed model.Results show 96% in F1-score and accuracy, and the proposed model outperformed the mentioned models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32604/cmc.2024.048270
- https://www.techscience.com/cmc/online/detail/20382/pdf
- OA Status
- diamond
- Cited By
- 2
- References
- 74
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394826696
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394826696Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32604/cmc.2024.048270Digital Object Identifier
- Title
-
Leveraging User-Generated Comments and Fused BiLSTM Models to Detect and Predict Issues with Mobile AppsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Wael M. S. Yafooz, Abdullah AlsaeediList of authors in order
- Landing page
-
https://doi.org/10.32604/cmc.2024.048270Publisher landing page
- PDF URL
-
https://www.techscience.com/cmc/online/detail/20382/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.techscience.com/cmc/online/detail/20382/pdfDirect OA link when available
- Concepts
-
Computer science, World Wide Web, Hajj, Mobile device, Artificial intelligence, The Internet, Service (business), Class (philosophy), Multimedia, Data science, Islam, Economics, Theology, Economy, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
74Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394826696 |
|---|---|
| doi | https://doi.org/10.32604/cmc.2024.048270 |
| ids.doi | https://doi.org/10.32604/cmc.2024.048270 |
| ids.openalex | https://openalex.org/W4394826696 |
| fwci | 1.2775571 |
| type | article |
| title | Leveraging User-Generated Comments and Fused BiLSTM Models to Detect and Predict Issues with Mobile Apps |
| biblio.issue | 1 |
| biblio.volume | 79 |
| biblio.last_page | 759 |
| biblio.first_page | 735 |
| topics[0].id | https://openalex.org/T10664 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9908000230789185 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Sentiment Analysis and Opinion Mining |
| topics[1].id | https://openalex.org/T11644 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9854000210762024 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Spam and Phishing Detection |
| topics[2].id | https://openalex.org/T10609 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9696000218391418 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3312 |
| topics[2].subfield.display_name | Sociology and Political Science |
| topics[2].display_name | Digital Marketing and Social Media |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7616884112358093 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C136764020 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5446864366531372 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[1].display_name | World Wide Web |
| concepts[2].id | https://openalex.org/C2781009399 |
| concepts[2].level | 3 |
| concepts[2].score | 0.4996941089630127 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q234915 |
| concepts[2].display_name | Hajj |
| concepts[3].id | https://openalex.org/C186967261 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4880000650882721 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5082128 |
| concepts[3].display_name | Mobile device |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44262614846229553 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C110875604 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44087404012680054 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q75 |
| concepts[5].display_name | The Internet |
| concepts[6].id | https://openalex.org/C2780378061 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4276544153690338 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25351891 |
| concepts[6].display_name | Service (business) |
| concepts[7].id | https://openalex.org/C2777212361 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41261959075927734 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[7].display_name | Class (philosophy) |
| concepts[8].id | https://openalex.org/C49774154 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3881647288799286 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q131765 |
| concepts[8].display_name | Multimedia |
| concepts[9].id | https://openalex.org/C2522767166 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3629985451698303 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[9].display_name | Data science |
| concepts[10].id | https://openalex.org/C4445939 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q432 |
| concepts[10].display_name | Islam |
| concepts[11].id | https://openalex.org/C162324750 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[11].display_name | Economics |
| concepts[12].id | https://openalex.org/C27206212 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q34178 |
| concepts[12].display_name | Theology |
| concepts[13].id | https://openalex.org/C136264566 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q159810 |
| concepts[13].display_name | Economy |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7616884112358093 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/world-wide-web |
| keywords[1].score | 0.5446864366531372 |
| keywords[1].display_name | World Wide Web |
| keywords[2].id | https://openalex.org/keywords/hajj |
| keywords[2].score | 0.4996941089630127 |
| keywords[2].display_name | Hajj |
| keywords[3].id | https://openalex.org/keywords/mobile-device |
| keywords[3].score | 0.4880000650882721 |
| keywords[3].display_name | Mobile device |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.44262614846229553 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/the-internet |
| keywords[5].score | 0.44087404012680054 |
| keywords[5].display_name | The Internet |
| keywords[6].id | https://openalex.org/keywords/service |
| keywords[6].score | 0.4276544153690338 |
| keywords[6].display_name | Service (business) |
| keywords[7].id | https://openalex.org/keywords/class |
| keywords[7].score | 0.41261959075927734 |
| keywords[7].display_name | Class (philosophy) |
| keywords[8].id | https://openalex.org/keywords/multimedia |
| keywords[8].score | 0.3881647288799286 |
| keywords[8].display_name | Multimedia |
| keywords[9].id | https://openalex.org/keywords/data-science |
| keywords[9].score | 0.3629985451698303 |
| keywords[9].display_name | Data science |
| language | en |
| locations[0].id | doi:10.32604/cmc.2024.048270 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191605 |
| locations[0].source.issn | 1546-2218, 1546-2226 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1546-2218 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://www.techscience.com/cmc/online/detail/20382/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computers, Materials & Continua |
| locations[0].landing_page_url | https://doi.org/10.32604/cmc.2024.048270 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5010105706 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2842-9736 |
| authorships[0].author.display_name | Wael M. S. Yafooz |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I23075662 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Computer Science and Engineering, Taibah University, Medina, 42353, Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I23075662 |
| authorships[0].institutions[0].ror | https://ror.org/01xv1nn60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I23075662 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | Taibah University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wael M. S. Yafooz |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science, College of Computer Science and Engineering, Taibah University, Medina, 42353, Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5074717609 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7974-7638 |
| authorships[1].author.display_name | Abdullah Alsaeedi |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I23075662 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Computer Science and Engineering, Taibah University, Medina, 42353, Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I23075662 |
| authorships[1].institutions[0].ror | https://ror.org/01xv1nn60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I23075662 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | Taibah University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Abdullah Alsaeedi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, College of Computer Science and Engineering, Taibah University, Medina, 42353, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.techscience.com/cmc/online/detail/20382/pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Leveraging User-Generated Comments and Fused BiLSTM Models to Detect and Predict Issues with Mobile Apps |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10664 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9908000230789185 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Sentiment Analysis and Opinion Mining |
| related_works | https://openalex.org/W3107179269, https://openalex.org/W2230088181, https://openalex.org/W1921621982, https://openalex.org/W4285411586, https://openalex.org/W2990977347, https://openalex.org/W2136135222, https://openalex.org/W2272555246, https://openalex.org/W2153830822, https://openalex.org/W1605863285, https://openalex.org/W2560276066 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32604/cmc.2024.048270 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191605 |
| best_oa_location.source.issn | 1546-2218, 1546-2226 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1546-2218 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.techscience.com/cmc/online/detail/20382/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computers, Materials & Continua |
| best_oa_location.landing_page_url | https://doi.org/10.32604/cmc.2024.048270 |
| primary_location.id | doi:10.32604/cmc.2024.048270 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191605 |
| primary_location.source.issn | 1546-2218, 1546-2226 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1546-2218 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://www.techscience.com/cmc/online/detail/20382/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computers, Materials & Continua |
| primary_location.landing_page_url | https://doi.org/10.32604/cmc.2024.048270 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6676799081, https://openalex.org/W2955950342, https://openalex.org/W3047995842, https://openalex.org/W3135420303, https://openalex.org/W2919209061, https://openalex.org/W4323361961, https://openalex.org/W6774041057, https://openalex.org/W6793672899, https://openalex.org/W6847977265, https://openalex.org/W6750983077, https://openalex.org/W2791503157, https://openalex.org/W3182086378, https://openalex.org/W6744199676, https://openalex.org/W2275464974, https://openalex.org/W6768337898, https://openalex.org/W6787895816, https://openalex.org/W4206461044, https://openalex.org/W3091638918, https://openalex.org/W6798363229, https://openalex.org/W6744727898, https://openalex.org/W3011099070, https://openalex.org/W2908863103, https://openalex.org/W6758364384, https://openalex.org/W3021091026, https://openalex.org/W6704879962, https://openalex.org/W6679436174, https://openalex.org/W2914435612, https://openalex.org/W2120571425, https://openalex.org/W2547513165, https://openalex.org/W2794018956, https://openalex.org/W6738772610, https://openalex.org/W2755160617, https://openalex.org/W2909755202, https://openalex.org/W7030154298, https://openalex.org/W1921621982, https://openalex.org/W6734357251, https://openalex.org/W6665185466, https://openalex.org/W6651270236, https://openalex.org/W6663256179, https://openalex.org/W2083094475, https://openalex.org/W6728310933, https://openalex.org/W4220808645, https://openalex.org/W4213254405, https://openalex.org/W4205089747, https://openalex.org/W6682487313, https://openalex.org/W6758115918, https://openalex.org/W2899230391, https://openalex.org/W1524375150, https://openalex.org/W2615056420, https://openalex.org/W3011484826, https://openalex.org/W6772850678, https://openalex.org/W2955374087, https://openalex.org/W6770415896, https://openalex.org/W6805320662, https://openalex.org/W6771783093, https://openalex.org/W3035119815, https://openalex.org/W3003618396, https://openalex.org/W2991441121, https://openalex.org/W3013437827, https://openalex.org/W6755279632, https://openalex.org/W3171716568, https://openalex.org/W3013466528, https://openalex.org/W3092289160, https://openalex.org/W2910832951, https://openalex.org/W3137064627, https://openalex.org/W2910741876, https://openalex.org/W2132031966, https://openalex.org/W2894703916, https://openalex.org/W2058461416, https://openalex.org/W2754222522, https://openalex.org/W3007143426, https://openalex.org/W2593374650, https://openalex.org/W2342799194, https://openalex.org/W2800889653 |
| referenced_works_count | 74 |
| abstract_inverted_index.a | 146, 159, 187, 213 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 14 |
| abstract_inverted_index.as | 100 |
| abstract_inverted_index.by | 132, 138, 173 |
| abstract_inverted_index.in | 79, 253 |
| abstract_inverted_index.is | 145 |
| abstract_inverted_index.it | 55 |
| abstract_inverted_index.of | 17, 37, 51, 116, 175, 247 |
| abstract_inverted_index.on | 67, 107, 110 |
| abstract_inverted_index.or | 28, 104, 135 |
| abstract_inverted_index.to | 13, 24, 70, 127, 157, 164, 243 |
| abstract_inverted_index.96% | 252 |
| abstract_inverted_index.all | 22, 45 |
| abstract_inverted_index.and | 6, 20, 44, 58, 73, 84, 92, 149, 166, 180, 209, 234, 255, 257 |
| abstract_inverted_index.any | 49 |
| abstract_inverted_index.app | 97, 112, 169 |
| abstract_inverted_index.are | 77 |
| abstract_inverted_index.can | 31, 53 |
| abstract_inverted_index.led | 12 |
| abstract_inverted_index.old | 29 |
| abstract_inverted_index.our | 41 |
| abstract_inverted_index.the | 1, 150, 178, 184, 206, 245, 248, 258, 262 |
| abstract_inverted_index.two | 88 |
| abstract_inverted_index.use | 32, 36 |
| abstract_inverted_index.was | 189 |
| abstract_inverted_index.who | 47 |
| abstract_inverted_index.Hajj | 179 |
| abstract_inverted_index.Long | 230, 238 |
| abstract_inverted_index.aims | 156 |
| abstract_inverted_index.also | 11 |
| abstract_inverted_index.apps | 39, 197 |
| abstract_inverted_index.bugs | 134 |
| abstract_inverted_index.deep | 161 |
| abstract_inverted_index.from | 183, 194 |
| abstract_inverted_index.have | 10, 123 |
| abstract_inverted_index.last | 2 |
| abstract_inverted_index.made | 124 |
| abstract_inverted_index.need | 48 |
| abstract_inverted_index.show | 251 |
| abstract_inverted_index.such | 99, 129, 143 |
| abstract_inverted_index.this | 154 |
| abstract_inverted_index.type | 50 |
| abstract_inverted_index.used | 78 |
| abstract_inverted_index.user | 140, 185 |
| abstract_inverted_index.were | 219 |
| abstract_inverted_index.with | 119 |
| abstract_inverted_index.work | 82 |
| abstract_inverted_index.Saudi | 63 |
| abstract_inverted_index.Umrah | 91, 181 |
| abstract_inverted_index.daily | 42, 81 |
| abstract_inverted_index.eases | 40 |
| abstract_inverted_index.great | 147 |
| abstract_inverted_index.large | 89 |
| abstract_inverted_index.model | 163, 260 |
| abstract_inverted_index.solve | 128 |
| abstract_inverted_index.still | 152 |
| abstract_inverted_index.study | 155 |
| abstract_inverted_index.their | 117 |
| abstract_inverted_index.these | 33, 38, 108, 120 |
| abstract_inverted_index.using | 191, 198, 221 |
| abstract_inverted_index.young | 27 |
| abstract_inverted_index.(ANN), | 229 |
| abstract_inverted_index.Arabia | 64 |
| abstract_inverted_index.Memory | 232, 240 |
| abstract_inverted_index.Neural | 227, 236 |
| abstract_inverted_index.access | 54 |
| abstract_inverted_index.assist | 71 |
| abstract_inverted_index.common | 222 |
| abstract_inverted_index.during | 87, 177 |
| abstract_inverted_index.faster | 7 |
| abstract_inverted_index.hybrid | 160 |
| abstract_inverted_index.issues | 98, 109, 131, 144, 151, 171 |
| abstract_inverted_index.lives, | 43 |
| abstract_inverted_index.mobile | 18, 34, 61, 75, 96, 111, 130, 168, 196 |
| abstract_inverted_index.number | 16 |
| abstract_inverted_index.people | 72 |
| abstract_inverted_index.speeds | 9 |
| abstract_inverted_index.steps, | 211 |
| abstract_inverted_index.(LSTM), | 233 |
| abstract_inverted_index.Network | 237 |
| abstract_inverted_index.comment | 106 |
| abstract_inverted_index.dataset | 188 |
| abstract_inverted_index.decade, | 3 |
| abstract_inverted_index.depends | 66 |
| abstract_inverted_index.devices | 19, 76 |
| abstract_inverted_index.digital | 68, 121 |
| abstract_inverted_index.easily, | 56 |
| abstract_inverted_index.examine | 244 |
| abstract_inverted_index.greatly | 65 |
| abstract_inverted_index.machine | 223 |
| abstract_inverted_index.models. | 264 |
| abstract_inverted_index.natural | 199 |
| abstract_inverted_index.periods | 182 |
| abstract_inverted_index.predict | 167 |
| abstract_inverted_index.propose | 158 |
| abstract_inverted_index.reviews | 115 |
| abstract_inverted_index.service | 52 |
| abstract_inverted_index.several | 125, 217 |
| abstract_inverted_index.solving | 142 |
| abstract_inverted_index.through | 60, 114 |
| abstract_inverted_index.whether | 26 |
| abstract_inverted_index.F1-score | 254 |
| abstract_inverted_index.Internet | 8 |
| abstract_inverted_index.Networks | 228 |
| abstract_inverted_index.apps.The | 35 |
| abstract_inverted_index.attempts | 126 |
| abstract_inverted_index.classify | 165 |
| abstract_inverted_index.comments | 193 |
| abstract_inverted_index.language | 200 |
| abstract_inverted_index.learning | 162, 224 |
| abstract_inverted_index.members, | 30 |
| abstract_inverted_index.methods, | 202 |
| abstract_inverted_index.millions | 174 |
| abstract_inverted_index.pilgrims | 94, 176 |
| abstract_inverted_index.process, | 208 |
| abstract_inverted_index.proposed | 249, 259 |
| abstract_inverted_index.relevant | 195 |
| abstract_inverted_index.services | 69 |
| abstract_inverted_index.society, | 25 |
| abstract_inverted_index.software | 170 |
| abstract_inverted_index.accuracy, | 256 |
| abstract_inverted_index.conducted | 220 |
| abstract_inverted_index.conflict, | 102 |
| abstract_inverted_index.customers | 46 |
| abstract_inverted_index.encounter | 95 |
| abstract_inverted_index.including | 203 |
| abstract_inverted_index.mentioned | 263 |
| abstract_inverted_index.platforms | 113 |
| abstract_inverted_index.reporting | 133 |
| abstract_inverted_index.schedules | 83 |
| abstract_inverted_index.services, | 85 |
| abstract_inverted_index.slowness, | 101 |
| abstract_inverted_index.technical | 4 |
| abstract_inverted_index.utilizing | 139 |
| abstract_inverted_index.(CNN-LSTM) | 241 |
| abstract_inverted_index.Artificial | 226 |
| abstract_inverted_index.Short-Term | 231, 239 |
| abstract_inverted_index.annotation | 207 |
| abstract_inverted_index.challenge, | 148 |
| abstract_inverted_index.increasing | 15 |
| abstract_inverted_index.occasions, | 90 |
| abstract_inverted_index.organizing | 80 |
| abstract_inverted_index.processing | 201 |
| abstract_inverted_index.considering | 212 |
| abstract_inverted_index.constructed | 190 |
| abstract_inverted_index.efficiently | 59 |
| abstract_inverted_index.encountered | 172 |
| abstract_inverted_index.experiences | 118 |
| abstract_inverted_index.experiments | 218 |
| abstract_inverted_index.extraction, | 205 |
| abstract_inverted_index.information | 204 |
| abstract_inverted_index.multi-class | 214 |
| abstract_inverted_index.performance | 246 |
| abstract_inverted_index.users.Thus, | 21 |
| abstract_inverted_index.advancements | 5 |
| abstract_inverted_index.classifiers, | 225 |
| abstract_inverted_index.comfortably, | 57 |
| abstract_inverted_index.contributors | 23 |
| abstract_inverted_index.outperformed | 261 |
| abstract_inverted_index.particularly | 86 |
| abstract_inverted_index.requirements | 137 |
| abstract_inverted_index.Convolutional | 235 |
| abstract_inverted_index.Hajj.However, | 93 |
| abstract_inverted_index.model.Results | 250 |
| abstract_inverted_index.problem.Then, | 216 |
| abstract_inverted_index.visitors.Such | 74 |
| abstract_inverted_index.architectures, | 242 |
| abstract_inverted_index.classification | 215 |
| abstract_inverted_index.non-functional | 136 |
| abstract_inverted_index.pre-processing | 210 |
| abstract_inverted_index.unreliability, | 103 |
| abstract_inverted_index.user-generated | 192 |
| abstract_inverted_index.exist.Therefore, | 153 |
| abstract_inverted_index.comments.However, | 141 |
| abstract_inverted_index.services.Scholars | 122 |
| abstract_inverted_index.apps.Particularly, | 62 |
| abstract_inverted_index.perspective.Firstly, | 186 |
| abstract_inverted_index.user-unfriendliness.Pilgrims | 105 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5010105706 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I23075662 |
| citation_normalized_percentile.value | 0.77363863 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |