LIC-Fusion 2.0: LiDAR-Inertial-Camera Odometry with Sliding-Window Plane-Feature Tracking Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2008.07196
Multi-sensor fusion of multi-modal measurements from commodity inertial, visual and LiDAR sensors to provide robust and accurate 6DOF pose estimation holds great potential in robotics and beyond. In this paper, building upon our prior work (i.e., LIC-Fusion), we develop a sliding-window filter based LiDAR-Inertial-Camera odometry with online spatiotemporal calibration (i.e., LIC-Fusion 2.0), which introduces a novel sliding-window plane-feature tracking for efficiently processing 3D LiDAR point clouds. In particular, after motion compensation for LiDAR points by leveraging IMU data, low-curvature planar points are extracted and tracked across the sliding window. A novel outlier rejection criterion is proposed in the plane-feature tracking for high-quality data association. Only the tracked planar points belonging to the same plane will be used for plane initialization, which makes the plane extraction efficient and robust. Moreover, we perform the observability analysis for the LiDAR-IMU subsystem and report the degenerate cases for spatiotemporal calibration using plane features. While the estimation consistency and identified degenerate motions are validated in Monte-Carlo simulations, different real-world experiments are also conducted to show that the proposed LIC-Fusion 2.0 outperforms its predecessor and other state-of-the-art methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2008.07196
- https://arxiv.org/pdf/2008.07196
- OA Status
- green
- Cited By
- 5
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3049231592
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3049231592Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2008.07196Digital Object Identifier
- Title
-
LIC-Fusion 2.0: LiDAR-Inertial-Camera Odometry with Sliding-Window Plane-Feature TrackingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-17Full publication date if available
- Authors
-
Xingxing Zuo, Yulin Yang, Patrick Geneva, Jiajun Lv, Yong Liu, Guoquan Huang, Marc PollefeysList of authors in order
- Landing page
-
https://arxiv.org/abs/2008.07196Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2008.07196Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2008.07196Direct OA link when available
- Concepts
-
Artificial intelligence, Computer vision, Computer science, Odometry, Lidar, Inertial measurement unit, Sliding window protocol, Sensor fusion, Feature (linguistics), Remote sensing, Geography, Robot, Mobile robot, Window (computing), Philosophy, Operating system, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3049231592 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2008.07196 |
| ids.doi | https://doi.org/10.48550/arxiv.2008.07196 |
| ids.mag | 3049231592 |
| ids.openalex | https://openalex.org/W3049231592 |
| fwci | |
| type | preprint |
| title | LIC-Fusion 2.0: LiDAR-Inertial-Camera Odometry with Sliding-Window Plane-Feature Tracking |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T11211 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1907 |
| topics[1].subfield.display_name | Geology |
| topics[1].display_name | 3D Surveying and Cultural Heritage |
| topics[2].id | https://openalex.org/T10531 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9972000122070312 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Vision and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7686299085617065 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C31972630 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7404946088790894 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[1].display_name | Computer vision |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6801114082336426 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C49441653 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6695711612701416 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2014717 |
| concepts[3].display_name | Odometry |
| concepts[4].id | https://openalex.org/C51399673 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6171231269836426 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[4].display_name | Lidar |
| concepts[5].id | https://openalex.org/C79061980 |
| concepts[5].level | 2 |
| concepts[5].score | 0.585692286491394 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q941680 |
| concepts[5].display_name | Inertial measurement unit |
| concepts[6].id | https://openalex.org/C102392041 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5249512195587158 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q592860 |
| concepts[6].display_name | Sliding window protocol |
| concepts[7].id | https://openalex.org/C33954974 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45604968070983887 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q486494 |
| concepts[7].display_name | Sensor fusion |
| concepts[8].id | https://openalex.org/C2776401178 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43577373027801514 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[8].display_name | Feature (linguistics) |
| concepts[9].id | https://openalex.org/C62649853 |
| concepts[9].level | 1 |
| concepts[9].score | 0.25740253925323486 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[9].display_name | Remote sensing |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.19095993041992188 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C90509273 |
| concepts[11].level | 2 |
| concepts[11].score | 0.16911998391151428 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[11].display_name | Robot |
| concepts[12].id | https://openalex.org/C19966478 |
| concepts[12].level | 3 |
| concepts[12].score | 0.13754159212112427 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[12].display_name | Mobile robot |
| concepts[13].id | https://openalex.org/C2778751112 |
| concepts[13].level | 2 |
| concepts[13].score | 0.10720768570899963 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q835016 |
| concepts[13].display_name | Window (computing) |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7686299085617065 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-vision |
| keywords[1].score | 0.7404946088790894 |
| keywords[1].display_name | Computer vision |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6801114082336426 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/odometry |
| keywords[3].score | 0.6695711612701416 |
| keywords[3].display_name | Odometry |
| keywords[4].id | https://openalex.org/keywords/lidar |
| keywords[4].score | 0.6171231269836426 |
| keywords[4].display_name | Lidar |
| keywords[5].id | https://openalex.org/keywords/inertial-measurement-unit |
| keywords[5].score | 0.585692286491394 |
| keywords[5].display_name | Inertial measurement unit |
| keywords[6].id | https://openalex.org/keywords/sliding-window-protocol |
| keywords[6].score | 0.5249512195587158 |
| keywords[6].display_name | Sliding window protocol |
| keywords[7].id | https://openalex.org/keywords/sensor-fusion |
| keywords[7].score | 0.45604968070983887 |
| keywords[7].display_name | Sensor fusion |
| keywords[8].id | https://openalex.org/keywords/feature |
| keywords[8].score | 0.43577373027801514 |
| keywords[8].display_name | Feature (linguistics) |
| keywords[9].id | https://openalex.org/keywords/remote-sensing |
| keywords[9].score | 0.25740253925323486 |
| keywords[9].display_name | Remote sensing |
| keywords[10].id | https://openalex.org/keywords/geography |
| keywords[10].score | 0.19095993041992188 |
| keywords[10].display_name | Geography |
| keywords[11].id | https://openalex.org/keywords/robot |
| keywords[11].score | 0.16911998391151428 |
| keywords[11].display_name | Robot |
| keywords[12].id | https://openalex.org/keywords/mobile-robot |
| keywords[12].score | 0.13754159212112427 |
| keywords[12].display_name | Mobile robot |
| keywords[13].id | https://openalex.org/keywords/window |
| keywords[13].score | 0.10720768570899963 |
| keywords[13].display_name | Window (computing) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2008.07196 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2008.07196 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2008.07196 |
| locations[1].id | doi:10.48550/arxiv.2008.07196 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2008.07196 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5045415760 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4158-3153 |
| authorships[0].author.display_name | Xingxing Zuo |
| authorships[0].countries | CH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I35440088 |
| authorships[0].affiliations[0].raw_affiliation_string | ETH Zürich, Department of Computer Science, Switzerland#TAB# |
| authorships[0].institutions[0].id | https://openalex.org/I35440088 |
| authorships[0].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[0].institutions[0].country_code | CH |
| authorships[0].institutions[0].display_name | ETH Zurich |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xingxing Zuo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | ETH Zürich, Department of Computer Science, Switzerland#TAB# |
| authorships[1].author.id | https://openalex.org/A5101976414 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9675-9147 |
| authorships[1].author.display_name | Yulin Yang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I86501945 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Delaware,Robot Perception and Navigation Group,Newark,DE,USA,19716 |
| authorships[1].institutions[0].id | https://openalex.org/I86501945 |
| authorships[1].institutions[0].ror | https://ror.org/01sbq1a82 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I86501945 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Delaware |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yulin Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Delaware,Robot Perception and Navigation Group,Newark,DE,USA,19716 |
| authorships[2].author.id | https://openalex.org/A5055849494 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2179-3447 |
| authorships[2].author.display_name | Patrick Geneva |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I86501945 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Delaware,Robot Perception and Navigation Group,Newark,DE,USA,19716 |
| authorships[2].institutions[0].id | https://openalex.org/I86501945 |
| authorships[2].institutions[0].ror | https://ror.org/01sbq1a82 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I86501945 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Delaware |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Patrick Geneva |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Delaware,Robot Perception and Navigation Group,Newark,DE,USA,19716 |
| authorships[3].author.id | https://openalex.org/A5080463555 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8545-9464 |
| authorships[3].author.display_name | Jiajun Lv |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[3].affiliations[0].raw_affiliation_string | Zhejiang University,Institute of Cyber-System and Control,Hangzhou,China |
| authorships[3].institutions[0].id | https://openalex.org/I76130692 |
| authorships[3].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhejiang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiajun Lv |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Zhejiang University,Institute of Cyber-System and Control,Hangzhou,China |
| authorships[4].author.id | https://openalex.org/A5100724297 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4822-8939 |
| authorships[4].author.display_name | Yong Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[4].affiliations[0].raw_affiliation_string | (Zhejiang University) |
| authorships[4].institutions[0].id | https://openalex.org/I76130692 |
| authorships[4].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Zhejiang University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yong Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | (Zhejiang University) |
| authorships[5].author.id | https://openalex.org/A5008502528 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9932-0685 |
| authorships[5].author.display_name | Guoquan Huang |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I86501945 |
| authorships[5].affiliations[0].raw_affiliation_string | University of Delaware,Robot Perception and Navigation Group,Newark,DE,USA,19716 |
| authorships[5].institutions[0].id | https://openalex.org/I86501945 |
| authorships[5].institutions[0].ror | https://ror.org/01sbq1a82 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I86501945 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Delaware |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Guoquan Huang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of Delaware,Robot Perception and Navigation Group,Newark,DE,USA,19716 |
| authorships[6].author.id | https://openalex.org/A5021908609 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2448-2318 |
| authorships[6].author.display_name | Marc Pollefeys |
| authorships[6].countries | CH |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I35440088 |
| authorships[6].affiliations[0].raw_affiliation_string | ETH Zürich, Department of Computer Science, Switzerland#TAB# |
| authorships[6].institutions[0].id | https://openalex.org/I35440088 |
| authorships[6].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[6].institutions[0].country_code | CH |
| authorships[6].institutions[0].display_name | ETH Zurich |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Marc Pollefeys |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | ETH Zürich, Department of Computer Science, Switzerland#TAB# |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2008.07196 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | LIC-Fusion 2.0: LiDAR-Inertial-Camera Odometry with Sliding-Window Plane-Feature Tracking |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W4319317934, https://openalex.org/W2998370018, https://openalex.org/W4313854656, https://openalex.org/W3125052734, https://openalex.org/W3123982513, https://openalex.org/W4391249506, https://openalex.org/W2951795132, https://openalex.org/W2755286209, https://openalex.org/W4312092966, https://openalex.org/W2785359964 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2008.07196 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2008.07196 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2008.07196 |
| primary_location.id | pmh:oai:arXiv.org:2008.07196 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2008.07196 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2008.07196 |
| publication_date | 2020-08-17 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2909157769, https://openalex.org/W2890090213, https://openalex.org/W2051349034, https://openalex.org/W2950413825, https://openalex.org/W2968190521, https://openalex.org/W2296360731, https://openalex.org/W2968125992, https://openalex.org/W2916364434, https://openalex.org/W2217443765, https://openalex.org/W2888422218, https://openalex.org/W3103406720, https://openalex.org/W2296228853 |
| referenced_works_count | 12 |
| abstract_inverted_index.A | 89 |
| abstract_inverted_index.a | 39, 54 |
| abstract_inverted_index.3D | 62 |
| abstract_inverted_index.In | 27, 66 |
| abstract_inverted_index.be | 115 |
| abstract_inverted_index.by | 74 |
| abstract_inverted_index.in | 23, 96, 159 |
| abstract_inverted_index.is | 94 |
| abstract_inverted_index.of | 2 |
| abstract_inverted_index.to | 12, 110, 168 |
| abstract_inverted_index.we | 37, 129 |
| abstract_inverted_index.2.0 | 174 |
| abstract_inverted_index.IMU | 76 |
| abstract_inverted_index.and | 9, 15, 25, 83, 126, 138, 153, 178 |
| abstract_inverted_index.are | 81, 157, 165 |
| abstract_inverted_index.for | 59, 71, 100, 117, 134, 143 |
| abstract_inverted_index.its | 176 |
| abstract_inverted_index.our | 32 |
| abstract_inverted_index.the | 86, 97, 105, 111, 122, 131, 135, 140, 150, 171 |
| abstract_inverted_index.6DOF | 17 |
| abstract_inverted_index.Only | 104 |
| abstract_inverted_index.also | 166 |
| abstract_inverted_index.data | 102 |
| abstract_inverted_index.from | 5 |
| abstract_inverted_index.pose | 18 |
| abstract_inverted_index.same | 112 |
| abstract_inverted_index.show | 169 |
| abstract_inverted_index.that | 170 |
| abstract_inverted_index.this | 28 |
| abstract_inverted_index.upon | 31 |
| abstract_inverted_index.used | 116 |
| abstract_inverted_index.will | 114 |
| abstract_inverted_index.with | 45 |
| abstract_inverted_index.work | 34 |
| abstract_inverted_index.2.0), | 51 |
| abstract_inverted_index.LiDAR | 10, 63, 72 |
| abstract_inverted_index.While | 149 |
| abstract_inverted_index.after | 68 |
| abstract_inverted_index.based | 42 |
| abstract_inverted_index.cases | 142 |
| abstract_inverted_index.data, | 77 |
| abstract_inverted_index.great | 21 |
| abstract_inverted_index.holds | 20 |
| abstract_inverted_index.makes | 121 |
| abstract_inverted_index.novel | 55, 90 |
| abstract_inverted_index.other | 179 |
| abstract_inverted_index.plane | 113, 118, 123, 147 |
| abstract_inverted_index.point | 64 |
| abstract_inverted_index.prior | 33 |
| abstract_inverted_index.using | 146 |
| abstract_inverted_index.which | 52, 120 |
| abstract_inverted_index.(i.e., | 35, 49 |
| abstract_inverted_index.across | 85 |
| abstract_inverted_index.filter | 41 |
| abstract_inverted_index.fusion | 1 |
| abstract_inverted_index.motion | 69 |
| abstract_inverted_index.online | 46 |
| abstract_inverted_index.paper, | 29 |
| abstract_inverted_index.planar | 79, 107 |
| abstract_inverted_index.points | 73, 80, 108 |
| abstract_inverted_index.report | 139 |
| abstract_inverted_index.robust | 14 |
| abstract_inverted_index.visual | 8 |
| abstract_inverted_index.beyond. | 26 |
| abstract_inverted_index.clouds. | 65 |
| abstract_inverted_index.develop | 38 |
| abstract_inverted_index.motions | 156 |
| abstract_inverted_index.outlier | 91 |
| abstract_inverted_index.perform | 130 |
| abstract_inverted_index.provide | 13 |
| abstract_inverted_index.robust. | 127 |
| abstract_inverted_index.sensors | 11 |
| abstract_inverted_index.sliding | 87 |
| abstract_inverted_index.tracked | 84, 106 |
| abstract_inverted_index.window. | 88 |
| abstract_inverted_index.accurate | 16 |
| abstract_inverted_index.analysis | 133 |
| abstract_inverted_index.building | 30 |
| abstract_inverted_index.methods. | 181 |
| abstract_inverted_index.odometry | 44 |
| abstract_inverted_index.proposed | 95, 172 |
| abstract_inverted_index.robotics | 24 |
| abstract_inverted_index.tracking | 58, 99 |
| abstract_inverted_index.LiDAR-IMU | 136 |
| abstract_inverted_index.Moreover, | 128 |
| abstract_inverted_index.belonging | 109 |
| abstract_inverted_index.commodity | 6 |
| abstract_inverted_index.conducted | 167 |
| abstract_inverted_index.criterion | 93 |
| abstract_inverted_index.different | 162 |
| abstract_inverted_index.efficient | 125 |
| abstract_inverted_index.extracted | 82 |
| abstract_inverted_index.features. | 148 |
| abstract_inverted_index.inertial, | 7 |
| abstract_inverted_index.potential | 22 |
| abstract_inverted_index.rejection | 92 |
| abstract_inverted_index.subsystem | 137 |
| abstract_inverted_index.validated | 158 |
| abstract_inverted_index.LIC-Fusion | 50, 173 |
| abstract_inverted_index.degenerate | 141, 155 |
| abstract_inverted_index.estimation | 19, 151 |
| abstract_inverted_index.extraction | 124 |
| abstract_inverted_index.identified | 154 |
| abstract_inverted_index.introduces | 53 |
| abstract_inverted_index.leveraging | 75 |
| abstract_inverted_index.processing | 61 |
| abstract_inverted_index.real-world | 163 |
| abstract_inverted_index.Monte-Carlo | 160 |
| abstract_inverted_index.calibration | 48, 145 |
| abstract_inverted_index.consistency | 152 |
| abstract_inverted_index.efficiently | 60 |
| abstract_inverted_index.experiments | 164 |
| abstract_inverted_index.multi-modal | 3 |
| abstract_inverted_index.outperforms | 175 |
| abstract_inverted_index.particular, | 67 |
| abstract_inverted_index.predecessor | 177 |
| abstract_inverted_index.LIC-Fusion), | 36 |
| abstract_inverted_index.Multi-sensor | 0 |
| abstract_inverted_index.association. | 103 |
| abstract_inverted_index.compensation | 70 |
| abstract_inverted_index.high-quality | 101 |
| abstract_inverted_index.measurements | 4 |
| abstract_inverted_index.simulations, | 161 |
| abstract_inverted_index.low-curvature | 78 |
| abstract_inverted_index.observability | 132 |
| abstract_inverted_index.plane-feature | 57, 98 |
| abstract_inverted_index.sliding-window | 40, 56 |
| abstract_inverted_index.spatiotemporal | 47, 144 |
| abstract_inverted_index.initialization, | 119 |
| abstract_inverted_index.state-of-the-art | 180 |
| abstract_inverted_index.LiDAR-Inertial-Camera | 43 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |